@article{ShoaeeSannaSforazzini2021, author = {Shoaee, Safa and Sanna, Anna Laura and Sforazzini, Giuseppe}, title = {Elucidating charge generation in green-solvent processed organic solar cells}, series = {Molecules : a journal of synthetic chemistry and natural product chemistry / Molecular Diversity Preservation International}, volume = {26}, journal = {Molecules : a journal of synthetic chemistry and natural product chemistry / Molecular Diversity Preservation International}, number = {24}, publisher = {MDPI}, address = {Basel}, issn = {1420-3049}, doi = {10.3390/molecules26247439}, pages = {13}, year = {2021}, abstract = {Organic solar cells have the potential to become the cheapest form of electricity. Rapid increase in the power conversion efficiency of organic solar cells (OSCs) has been achieved with the development of non-fullerene small-molecule acceptors. Next generation photovoltaics based upon environmentally benign "green solvent" processing of organic semiconductors promise a step-change in the adaptability and versatility of solar technologies and promote sustainable development. However, high-performing OSCs are still processed by halogenated (non-environmentally friendly) solvents, so hindering their large-scale manufacture. In this perspective, we discuss the recent progress in developing highly efficient OSCs processed from eco-compatible solvents, and highlight research challenges that should be addressed for the future development of high power conversion efficiencies devices.}, language = {en} } @article{ZhangChenArminetal.2017, author = {Zhang, Kai and Chen, Zhiming and Armin, Ardalan and Dong, Sheng and Xia, Ruoxi and Yip, Hin-Lap and Shoaee, Safa and Huang, Fei and Cao, Yong}, title = {Efficient large area organic solar cells processed by blade-coating with single-component green solvent}, series = {Solar Rrl}, volume = {2}, journal = {Solar Rrl}, number = {1}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2367-198X}, doi = {10.1002/solr.201700169}, pages = {9}, year = {2017}, abstract = {While the performance of laboratory-scale organic solar cells (OSCs) continues to grow, development of high efficiency large area OSCs remains a big challenge. Although a few attempts to produce large area organic solar cells (OSCs) have been reported, there are still challenges on the way to realizing efficient module devices, such as the low compatibility of the thickness-sensitive active layer with large area coating techniques, the frequent need for toxic solvents and tedious optimization processes used during device fabrication. In this work, highly efficient thickness-insensitive OSCs based on PTB7-Th:PC71BM that processed with single-component green solvent 2-methylanisole are presented, in which both junction thickness limitation and solvent toxicity issues are simultaneously addressed. Careful investigation reveals that this green solvent prevents the evolution of PC71BM into large area clusters resulting in reduced charge carrier recombination, and largely eliminates trapping centers, and thus improves the thickness tolerance of the films. These findings enable us to address the scalability and solvent toxicity issues and to fabricate a 16 cm(2) OSC with doctor-blade coating with a state-of-the-art power conversion efficiency of 7.5\% using green solvent.}, language = {en} }