@article{FernandezGonzalezDoncelGarcesetal.2020, author = {Fernandez, Ricardo and Gonzalez-Doncel, Gaspar and Garces, Gerardo and Bruno, Giovanni}, title = {Towards a comprehensive understanding of creep}, series = {Materials science \& engineering. A, Structural materials: properties, microstructure and processing}, volume = {776}, journal = {Materials science \& engineering. A, Structural materials: properties, microstructure and processing}, publisher = {Elsevier}, address = {Lausanne}, issn = {0921-5093}, doi = {10.1016/j.msea.2020.139036}, pages = {7}, year = {2020}, abstract = {We show that the equation proposed by Takeuchi and Argon to explain the creep behavior of Al-Mg solid solution can be used to describe also the creep behavior of pure aluminum. In this frame, it is possible to avoid the use of the classic pre-exponential fitting parameter in the power law equation to predict the minimum creep strain rate. The effect of the fractal arrangement of dislocations, developed at the mesoscale, must be considered to fully explain the experimental data. These ideas allow improving the recently introduced SSTC model, fully describing the primary and secondary creep regimes of aluminum alloys without the need for fitting. Creep data from commercially pure A199.8\% and Al-Mg alloys tested at different temperatures and stresses are used to validate the proposed ideas.}, language = {en} } @article{GuetschowNesmeWerner2012, author = {Guetschow, Johannes and Nesme, Vincent and Werner, Reinhard F.}, title = {Self-similarity of cellular automata on abelian groups}, series = {Journal of cellular automata}, volume = {7}, journal = {Journal of cellular automata}, number = {2}, publisher = {Old City Publishing Science}, address = {Philadelphia}, issn = {1557-5969}, pages = {83 -- 113}, year = {2012}, abstract = {It is well known that the spacetime diagrams of some cellular automata have a self-similar fractal structure: for instance Wolfram's rule 90 generates a Sierpinski triangle. Explaining the self-similarity of the spacetime diagrams of cellular automata is a well-explored topic, but virtually all of the results revolve around a special class of automata, whose typical features include irreversibility, an alphabet with a ring structure, a global evolution that is a ring homomorphism, and a property known as (weakly) p-Fermat. The class of automata that we study in this article has none of these properties. Their cell structure is weaker, as it does not come with a multiplication, and they are far from being p-Fermat, even weakly. However, they do produce self-similar spacetime diagrams, and we explain why and how.}, language = {en} }