@article{FangGouldLysyakovaetal.2018, author = {Fang, Liang and Gould, Oliver E. C. and Lysyakova, Liudmila and Jiang, Yi and Sauter, Tilman and Frank, Oliver and Becker, Tino and Schossig, Michael and Kratz, Karl and Lendlein, Andreas}, title = {Implementing and quantifying the shape-memory effect of single polymeric micro/nanowires with an atomic force microscope}, series = {ChemPhysChem : a European journal of chemical physics and physical chemistry}, volume = {19}, journal = {ChemPhysChem : a European journal of chemical physics and physical chemistry}, number = {16}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1439-4235}, doi = {10.1002/cphc.201701362}, pages = {2078 -- 2084}, year = {2018}, abstract = {The implementation of shape-memory effects (SME) in polymeric micro- or nano-objects currently relies on the application of indirect macroscopic manipulation techniques, for example, stretchable molds or phantoms, to ensembles of small objects. Here, we introduce a method capable of the controlled manipulation and SME quantification of individual micro- and nano-objects in analogy to macroscopic thermomechanical test procedures. An atomic force microscope was utilized to address individual electro-spun poly(ether urethane) (PEU) micro- or nanowires freely suspended between two micropillars on a micro-structured silicon substrate. In this way, programming strains of 10 +/- 1\% or 21 +/- 1\% were realized, which could be successfully fixed. An almost complete restoration of the original free-suspended shape during heating confirmed the excellent shape-memory performance of the PEU wires. Apparent recovery stresses of sigma(max,app)=1.2 +/- 0.1 and 33.3 +/- 0.1MPa were obtained for a single microwire and nanowire, respectively. The universal AFM test platform described here enables the implementation and quantification of a thermomechanically induced function for individual polymeric micro- and nanosystems.}, language = {en} } @article{LendleinSauter2013, author = {Lendlein, Andreas and Sauter, Tilman}, title = {Shape-memory effect in polymers}, series = {Macromolecular chemistry and physics}, volume = {214}, journal = {Macromolecular chemistry and physics}, number = {11}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1022-1352}, doi = {10.1002/macp.201300098}, pages = {1175 -- 1177}, year = {2013}, language = {en} } @article{SauterKratzHeucheletal.2021, author = {Sauter, Tilman and Kratz, Karl and Heuchel, Matthias and Lendlein, Andreas}, title = {Fiber diameter as design parameter for tailoring the macroscopic shape-memory performance of electrospun meshes}, series = {Materials and design}, volume = {202}, journal = {Materials and design}, publisher = {Elsevier}, address = {Amsterdam [u.a.]}, issn = {1873-4197}, doi = {10.1016/j.matdes.2021.109546}, pages = {10}, year = {2021}, abstract = {Fibrous shape-memory polymer (SMP) scaffolds were investigated considering the fiber as basic microstructural feature. By reduction of the fiber diameter in randomly oriented electrospun polyetherurethane (PEU) meshes from the micro-to the nano-scale, we observed changes in the molecular orientation within the fibers and its impact on the structural and shape-memory performance. It was assumed that a spatial restriction by reduction of the fiber diameter increases molecular orientation along the orientation of the fiber. The stress-strain relation of random PEU scaffolds is initially determined by the 3D arrangement of the fibers and thus is independent of the molecular orientation. Increasing the molecular orientation with decreasing single fiber diameter in scaffolds composed of randomly arranged fibers did not alter the initial stiffness and peak stress but strongly influenced the elongation at break and the stress increase above the Yield point. Reduction of the single fiber diameter also distinctly improved the shape-memory performance of the scaffolds. Fibers with nanoscale diameters (< 100 nm) possessed an almost complete shape recovery, high recovery stresses and fast relaxation kinetics, while the shape fixity was found to decrease with decreasing fiber diameter. Hence, the fiber diameter is a relevant design parameter for SMP.}, language = {en} } @article{ZhangSauterFangetal.2015, author = {Zhang, Quanchao and Sauter, Tilman and Fang, Liang and Kratz, Karl and Lendlein, Andreas}, title = {Shape-Memory Capability of Copolyetheresterurethane Microparticles Prepared via Electrospraying}, series = {Macromolecular materials and engineering}, volume = {300}, journal = {Macromolecular materials and engineering}, number = {5}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1438-7492}, doi = {10.1002/mame.201400267}, pages = {522 -- 530}, year = {2015}, abstract = {Multifunctional thermo-responsive and degradable microparticles exhibiting a shapememory effect (SME) have attracted widespread interest in biomedicine as switchable delivery vehicles or microactuators. In this work almost spherical solid microparticles with an average diameter of 3.9 +/- 0.9 mm are prepared via electrospraying of a copolyetheresterurethane named PDC, which is composed of crystallizable oligo(p-dioxanone) (OPDO) hard and oligo(e-caprolactone) (OCL) switching segments. The PDC microparticles are programmed via compression at different pressures and their shapememory capability is explored by off-line and online heating experiments. When a low programming pressure of 0.2 MPa is applied a pronounced thermally-induced shape-memory effect is achieved with a shape recovery ratio about 80\%, while a high programming pressure of 100 MPa resulted in a weak shape-memory performance. Finally, it is demonstrated that an array of PDC microparticles deposited on a polypropylene (PP) substrate can be successfully programmed into a smart temporary film, which disintegrates upon heating to 60 degrees C.}, language = {en} }