@misc{BlockGuenterRodriguesetal.2021, author = {Block, Inga and G{\"u}nter, Christina and Rodrigues, Alysson Duarte and Paasch, Silvia and Hesemann, Peter and Taubert, Andreas}, title = {Carbon Adsorbents from Spent Coffee for Removal of Methylene Blue and Methyl Orange from Water}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {14}, issn = {1866-8372}, doi = {10.25932/publishup-52165}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-521653}, pages = {20}, year = {2021}, abstract = {Activated carbons (ACs) were prepared from dried spent coffee (SCD), a biological waste product, to produce adsorbents for methylene blue (MB) and methyl orange (MO) from aqueous solution. Pre-pyrolysis activation of SCD was achieved via treatment of the SCD with aqueous sodium hydroxide solutions at 90 °C. Pyrolysis of the pretreated SCD at 500 °C for 1 h produced powders with typical characteristics of AC suitable and effective for dye adsorption. As an alternative to the rather harsh base treatment, calcium carbonate powder, a very common and abundant resource, was also studied as an activator. Mixtures of SCD and CaCO3 (1:1 w/w) yielded effective ACs for MO and MB removal upon pyrolysis needing only small amounts of AC to clear the solutions. A selectivity of the adsorption process toward anionic (MO) or cationic (MB) dyes was not observed.}, language = {en} } @misc{SteeplesKellingSchildeetal.2016, author = {Steeples, Elliot and Kelling, Alexandra and Schilde, Uwe and Esposito, Davide}, title = {Amino acid-derived N-heterocyclic carbene palladium complexes for aqueous phase Suzuki-Miyaura couplings}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-394488}, pages = {4922 -- 4930}, year = {2016}, abstract = {In this work, three ligands produced from amino acids were synthesized and used to produce five bis- and PEPPSI-type palladium-NHC complexes using a novel synthesis route from sustainable starting materials. Three of these complexes were used as precatalysts in the aqueous-phase Suzuki-Miyaura coupling of various substrates displaying high activity. TEM and mercury poisoning experiments provide evidence for Pd-nanoparticle formation stabilized in water.}, language = {en} } @phdthesis{Steeples2016, author = {Steeples, Elliot}, title = {Amino acid-derived imidazolium salts: platform molecules for N-Heterocyclic carbene metal complexes and organosilica materials}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-101861}, school = {Universit{\"a}t Potsdam}, pages = {139}, year = {2016}, abstract = {In the interest of producing functional catalysts from sustainable building-blocks, 1, 3-dicarboxylate imidazolium salts derived from amino acids were successfully modified to be suitable as N-Heterocyclic carbene (NHC) ligands within metal complexes. Complexes of Ag(I), Pd(II), and Ir(I) were successfully produced using known procedures using ligands derived from glycine, alanine, β-alanine and phenylalanine. The complexes were characterized in solid state using X-Ray crystallography, which allowed for the steric and electronic comparison of these ligands to well-known NHC ligands within analogous metal complexes. The palladium complexes were tested as catalysts for aqueous-phase Suzuki-Miyaura cross-coupling. Water-solubility could be induced via ester hydrolysis of the N-bound groups in the presence of base. The mono-NHC-Pd complexes were seen to be highly active in the coupling of aryl bromides with phenylboronic acid; the active catalyst of which was determined to be mostly Pd(0) nanoparticles. Kinetic studies determined that reaction proceeds quickly in the coupling of bromoacetophenone, for both pre-hydrolyzed and in-situ hydrolysis catalyst dissolution. The catalyst could also be recycled for an extra run by simply re-using the aqueous layer. The imidazolium salts were also used to produce organosilica hybrid materials. This was attempted via two methods: by post-grafting onto a commercial organosilica, and co-condensation of the corresponding organosilane. The co-condensation technique harbours potential for the production of solid-support catalysts.}, language = {en} } @misc{ZamponiPenfoldNachtegaaletal.2014, author = {Zamponi, Flavio and Penfold, Thomas J. and Nachtegaal, Maarten and L{\"u}bcke, Andrea and Rittmann, Jochen and Milne, Chris J. and Chergui, Majed and van Bokhoven, Jeroen A.}, title = {Probing the dynamics of plasmon-excited hexanethiol-capped gold nanoparticles by picosecond X-ray absorption spectroscopy}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-74492}, pages = {23157 -- 23163}, year = {2014}, abstract = {Picosecond X-ray absorption spectroscopy (XAS) is used to investigate the electronic and structural dynamics initiated by plasmon excitation of 1.8 nm diameter Au nanoparticles (NPs) functionalised with 1-hexanethiol. We show that 100 ps after photoexcitation the transient XAS spectrum is consistent with an 8\% expansion of the Au-Au bond length and a large increase in disorder associated with melting of the NPs. Recovery of the ground state occurs with a time constant of ∼1.8 ns, arising from thermalisation with the environment. Simulations reveal that the transient spectrum exhibits no signature of charge separation at 100 ps and allows us to estimate an upper limit for the quantum yield (QY) of this process to be <0.1.}, language = {en} } @phdthesis{Mertoglu2004, author = {Mertoglu, Murat}, title = {The synthesis of well-defined functional homo- and block copolymers in aqueous media via Reversible Addition-Fragmentation Chain Transfer (RAFT) Polymerization}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-2338}, school = {Universit{\"a}t Potsdam}, year = {2004}, abstract = {New chain transfer agents based on dithiobenzoate and trithiocarbonate for free radical polymerization via Reversible Addition-Fragmentation chain Transfer (RAFT) were synthesized. The new compounds bear permanently hydrophilic sulfonate moieties which provide solubility in water independent of the pH. One of them bears a fluorophore, enabling unsymmetrical double end group labelling as well as the preparation of fluorescent labeled polymers. Their stability against hydrolysis in water was studied, and compared with the most frequently employed water-soluble RAFT agent 4-cyano-4-thiobenzoylsulfanylpentanoic acid dithiobenzoate, using UV-Vis and 1H-NMR spectroscopy. An improved resistance to hydrolysis was found for the new RAFT agents, providing good stabilities in the pH range between 1 and 8, and up to temperatures of 70°C. Subsequently, a series of non-ionic, anionic and cationic water-soluble monomers were polymerized via RAFT in water. In these experiments, polymerizations were conducted either at 48°C or 55°C, that are lower than the conventionally employed temperatures (>60°C) for RAFT in organic solvents, in order to minimize hydrolysis of the active chain ends (e.g. dithioester and trithiocarbonate), and thus to obtain good control over the polymerization. Under these conditions, controlled polymerization in aqueous solution was possible with styrenic, acrylic and methacrylic monomers: molar masses increase with conversion, polydispersities are low, and the degree of end group functionalization is high. But polymerizations of methacrylamides were slow at temperatures below 60°C, and showed only moderate control. The RAFT process in water was also proved to be a powerful method to synthesize di- and triblock copolymers including the preparation of functional polymers with complex structure, such as amphiphilic and stimuli-sensitive block copolymers. These include polymers containing one or even two stimuli-sensitive hydrophilic blocks. The hydrophilic character of a single or of several blocks was switched by changing the pH, the temperature or the salt content, to demonstrate the variability of the molecular designs suited for stimuli-sensitive polymeric amphiphiles, and to exemplify the concept of multiple-sensitive systems. Furthermore, stable colloidal block ionomer complexes were prepared by mixing anionic surfactants in aqueous media with a double hydrophilic block copolymer synthesized via RAFT in water. The block copolymer is composed of a noncharged hydrophilic block based on polyethyleneglycol and a cationic block. The complexes prepared with perfluoro decanoate were found so stable that they even withstand dialysis; notably they do not denaturate proteins. So, they are potentially useful for biomedical applications in vivo.}, language = {en} } @phdthesis{Sinn2004, author = {Sinn, Cornelia G.}, title = {Ion binding to polymers and lipid membranes in aqueous solutions : Ionenbindung an Polymeren und Lipidmembranen in w{\"a}ssrigen L{\"o}sungen}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0001778}, school = {Universit{\"a}t Potsdam}, year = {2004}, abstract = {Ziel dieser Arbeit ist die Untersuchung der Ionenbindung an Polymeren und Lipidmembranen in w{\"a}ssrigen L{\"o}sungen. Im ersten Teil dieser Arbeit wurde der Einfluss verschiedener anorganischer Salze und Polyelektrolyte auf die Struktur des Wassers mit Hilfe Isothermer Mikrotitrationskalorimetrie (ITC) erforscht. Die Verd{\"u}nnungsw{\"a}rme der Salze wurde als Maß f{\"u}r die F{\"a}higkeit der Ionen, die geordnete Struktur des Wassers zu stabilisieren oder zu zerst{\"o}ren, verwendet. Die Verd{\"u}nnungsw{\"a}rmen konnten auf Hofmeister Effekte zur{\"u}ckgef{\"u}hrt werden. Im Anschluss daran wurde die Bindung von Ca2+ an Natrium- Poly(acryls{\"a}ure) (NaPAA) untersucht. Mit Hilfe von ITC und einer Ca2+- selektiven Elektrode wurde die Reaktionsenthalpie und Bindungsisotherme gemessen. Es wurde gezeigt, dass die Binding von Ca2+ - Ionen an NaPAA stark endotherm und daher entropiegetrieben ist. Anschließend wurde die Bindung von Ca2+ an die eindimensionale Polymerkette mit der an ein Lipidvesikel mit denselben funktioniellen Gruppen verglichen. Es wurde beobachtet, dass die Ionenbindung \–wie auch im Fall des Polymers- endotherm ist. Ein Vergleich der Ca2+- Bindung an die Lipidmembran mit der an das Polymer konnte zeigen, dass das Ion schw{\"a}cher an die Membran bindet. Im Zusammenhang mit diesen Experimenten wurde auch beobachtet, dass Ca2+ nicht nur an geladene, sondern auch an zwitterionische Lipidvesikel bindet. Schließlich wurde die Wechselwirkung zweier Salze, KCl and NaCl, mit einem neutralen Polymergel, PNIPAAM, und dem geladenen Polymer PAA untersucht. Mit Hilfe von Kalorimetrie und einer kaliumselektiven Elektrode wurde beobachtet, dass die Ionen mit beiden Polymeren wechselwirken, unabh{\"a}ngig davon, ob diese Ladungen tragen, oder nicht.}, language = {en} }