@article{MorgnerBennemannCywińskietal.2017, author = {Morgner, Frank and Bennemann, Mark and Cywiński, Piotr J. and Kollosche, Matthias and G{\´o}rski, Krzysztof and Pietraszkiewicz, Marek and Geßner, Andr{\´e} and L{\"o}hmannsr{\"o}ben, Hans-Gerd}, title = {Elastic FRET sensors for contactless pressure measurement}, series = {RSC Advances : an international journal to further the chemical sciences}, volume = {7}, journal = {RSC Advances : an international journal to further the chemical sciences}, publisher = {RSC Publishing}, address = {Cambridge}, issn = {2046-2069}, doi = {10.1039/c7ra06379b}, pages = {50578 -- 50583}, year = {2017}, abstract = {Contactless pressure monitoring based on Forster resonance energy transfer between donor/acceptor pairs immobilized within elastomers is demonstrated. The donor/acceptor energy transfer is employed by dispersing terbium(III) tris[(2-hydroxybenzoyl)-2-aminoethyl] amine complex (LLC, donor) and CdSe/ZnS quantum dots (QD655, acceptor) in styrene-ethylene/buthylene-styrene (SEBS) and poly(dimethylsiloxane) (PDMS). The continuous monitoring of QD luminescence showed a reversible intensity change as the pressure signal is alternated between two stable states indicating a pressure sensitivity of 6350 cps kPa(-1). Time-resolved measurements show the pressure impact on the FRET signal due to an increase of decay time (270 ms up to 420 ms) for the donor signal and parallel drop of decay time (170 mu s to 155 mu s) for the acceptor signal as the net pressure applied. The LLC/QD655 sensors enable a contactless readout as well as space resolved monitoring to enable miniaturization towards smaller integrated stretchable opto-electronics. Elastic FRET sensors can potentially lead to developing profitable analysis systems capable to outdo conventional wired electronic systems (inductive, capacitive, ultrasonic and photoelectric sensors) especially for point-of-care diagnostics, biological monitoring required for wearable electronics.}, language = {en} } @misc{ZehbeKolloscheLardongetal.2017, author = {Zehbe, Kerstin and Kollosche, Matthias and Lardong, Sebastian and Kelling, Alexandra and Schilde, Uwe and Taubert, Andreas}, title = {Ionogels based on poly(methyl methacrylate) and metal-containing ionic liquids}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-400607}, pages = {16}, year = {2017}, abstract = {Ionogels (IGs) based on poly(methyl methacrylate) (PMMA) and the metal-containing ionic liquids (ILs) bis-1-butyl-3-methlimidazolium tetrachloridocuprate(II), tetrachloride cobaltate(II), and tetrachlorido manganate(II) have been synthesized and their mechanical and electrical properties have been correlated with their microstructure. Unlike many previous examples, the current IGs show a decreasing stability in stress-strain experiments on increasing IL fractions. The conductivities of the current IGs are lower than those observed in similar examples in the literature. Both effects are caused by a two-phase structure with micrometer-sized IL-rich domains homogeneously dispersed an IL-deficient continuous PMMA phase. This study demonstrates that the IL-polymer miscibility and the morphology of the IGs are key parameters to control the (macroscopic) properties of IGs.}, language = {en} } @article{AhnertAbelKolloscheetal.2011, author = {Ahnert, Karsten and Abel, Markus and Kollosche, Matthias and Jorgensen, Per Jorgen and Kofod, Guggi}, title = {Soft capacitors for wave energy harvesting}, series = {Journal of materials chemistry}, volume = {21}, journal = {Journal of materials chemistry}, number = {38}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {0959-9428}, doi = {10.1039/c1jm12454d}, pages = {14492 -- 14497}, year = {2011}, abstract = {Wave energy harvesting could be a substantial renewable energy source without impact on the global climate and ecology, yet practical attempts have struggled with the problems of wear and catastrophic failure. An innovative technology for ocean wave energy harvesting was recently proposed, based on the use of soft capacitors. This study presents a realistic theoretical and numerical model for the quantitative characterization of this harvesting method. Parameter regions with optimal behavior are found, and novel material descriptors are determined, which dramatically simplify analysis. The characteristics of currently available materials are evaluated, and found to merit a very conservative estimate of 10 years for raw material cost recovery.}, language = {en} }