@article{MorgnerBennemannCywińskietal.2017, author = {Morgner, Frank and Bennemann, Mark and Cywiński, Piotr J. and Kollosche, Matthias and G{\´o}rski, Krzysztof and Pietraszkiewicz, Marek and Geßner, Andr{\´e} and L{\"o}hmannsr{\"o}ben, Hans-Gerd}, title = {Elastic FRET sensors for contactless pressure measurement}, series = {RSC Advances : an international journal to further the chemical sciences}, volume = {7}, journal = {RSC Advances : an international journal to further the chemical sciences}, publisher = {RSC Publishing}, address = {Cambridge}, issn = {2046-2069}, doi = {10.1039/c7ra06379b}, pages = {50578 -- 50583}, year = {2017}, abstract = {Contactless pressure monitoring based on Forster resonance energy transfer between donor/acceptor pairs immobilized within elastomers is demonstrated. The donor/acceptor energy transfer is employed by dispersing terbium(III) tris[(2-hydroxybenzoyl)-2-aminoethyl] amine complex (LLC, donor) and CdSe/ZnS quantum dots (QD655, acceptor) in styrene-ethylene/buthylene-styrene (SEBS) and poly(dimethylsiloxane) (PDMS). The continuous monitoring of QD luminescence showed a reversible intensity change as the pressure signal is alternated between two stable states indicating a pressure sensitivity of 6350 cps kPa(-1). Time-resolved measurements show the pressure impact on the FRET signal due to an increase of decay time (270 ms up to 420 ms) for the donor signal and parallel drop of decay time (170 mu s to 155 mu s) for the acceptor signal as the net pressure applied. The LLC/QD655 sensors enable a contactless readout as well as space resolved monitoring to enable miniaturization towards smaller integrated stretchable opto-electronics. Elastic FRET sensors can potentially lead to developing profitable analysis systems capable to outdo conventional wired electronic systems (inductive, capacitive, ultrasonic and photoelectric sensors) especially for point-of-care diagnostics, biological monitoring required for wearable electronics.}, language = {en} } @misc{HeyneArltGessneretal.2020, author = {Heyne, Benjamin and Arlt, Kristin and Geßner, Andr{\´e} and Richter, Alexander F. and D{\"o}blinger, Markus and Feldmann, Jochen and Taubert, Andreas and Wedel, Armin}, title = {Mixed Mercaptocarboxylic Acid Shells Provide Stable Dispersions of InPZnS/ZnSe/ZnS Multishell Quantum Dots in Aqueous Media}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1026}, issn = {1866-8372}, doi = {10.25932/publishup-48603}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-486032}, pages = {26}, year = {2020}, abstract = {Highly luminescent indium phosphide zinc sulfide (InPZnS) quantum dots (QDs), with zinc selenide/zinc sulfide (ZnSe/ZnS) shells, were synthesized. The QDs were modified via a post-synthetic ligand exchange reaction with 3-mercaptopropionic acid (MPA) and 11-mercaptoundecanoic acid (MUA) in different MPA:MUA ratios, making this study the first investigation into the effects of mixed ligand shells on InPZnS QDs. Moreover, this article also describes an optimized method for the correlation of the QD size vs. optical absorption of the QDs. Upon ligand exchange, the QDs can be dispersed in water. Longer ligands (MUA) provide more stable dispersions than short-chain ligands. Thicker ZnSe/ZnS shells provide a better photoluminescence quantum yield (PLQY) and higher emission stability upon ligand exchange. Both the ligand exchange and the optical properties are highly reproducible between different QD batches. Before dialysis, QDs with a ZnS shell thickness of ~4.9 monolayers (ML), stabilized with a mixed MPA:MUA (mixing ratio of 1:10), showed the highest PLQY, at ~45\%. After dialysis, QDs with a ZnS shell thickness of ~4.9 ML, stabilized with a mixed MPA:MUA and a ratio of 1:10 and 1:100, showed the highest PLQYs, of ~41\%. The dispersions were stable up to 44 days at ambient conditions and in the dark. After 44 days, QDs with a ZnS shell thickness of ~4.9 ML, stabilized with only MUA, showed the highest PLQY, of ~34\%.}, language = {en} } @article{HeyneArltGessneretal.2020, author = {Heyne, Benjamin and Arlt, Kristin and Geßner, Andr{\´e} and Richter, Alexander F. and D{\"o}blinger, Markus and Feldmann, Jochen and Taubert, Andreas and Wedel, Armin}, title = {Mixed Mercaptocarboxylic Acid Shells Provide Stable Dispersions of InPZnS/ZnSe/ZnS Multishell Quantum Dots in Aqueous Media}, series = {Nanomaterials}, volume = {10}, journal = {Nanomaterials}, number = {9}, publisher = {MDPI}, address = {Basel}, issn = {2079-4991}, doi = {10.3390/nano10091858}, pages = {24}, year = {2020}, abstract = {Highly luminescent indium phosphide zinc sulfide (InPZnS) quantum dots (QDs), with zinc selenide/zinc sulfide (ZnSe/ZnS) shells, were synthesized. The QDs were modified via a post-synthetic ligand exchange reaction with 3-mercaptopropionic acid (MPA) and 11-mercaptoundecanoic acid (MUA) in different MPA:MUA ratios, making this study the first investigation into the effects of mixed ligand shells on InPZnS QDs. Moreover, this article also describes an optimized method for the correlation of the QD size vs. optical absorption of the QDs. Upon ligand exchange, the QDs can be dispersed in water. Longer ligands (MUA) provide more stable dispersions than short-chain ligands. Thicker ZnSe/ZnS shells provide a better photoluminescence quantum yield (PLQY) and higher emission stability upon ligand exchange. Both the ligand exchange and the optical properties are highly reproducible between different QD batches. Before dialysis, QDs with a ZnS shell thickness of ~4.9 monolayers (ML), stabilized with a mixed MPA:MUA (mixing ratio of 1:10), showed the highest PLQY, at ~45\%. After dialysis, QDs with a ZnS shell thickness of ~4.9 ML, stabilized with a mixed MPA:MUA and a ratio of 1:10 and 1:100, showed the highest PLQYs, of ~41\%. The dispersions were stable up to 44 days at ambient conditions and in the dark. After 44 days, QDs with a ZnS shell thickness of ~4.9 ML, stabilized with only MUA, showed the highest PLQY, of ~34\%.}, language = {en} } @article{TiseanuParvulescuKumkeetal.2009, author = {Tiseanu, Carmen and P{\^a}rvulescu, Victor I. and Kumke, Michael Uwe and Dobroiu, Svako and Geßner, Andr{\´e} and Simon, Simion}, title = {Effects of support and ligand on the photoluminescence properties of siliceous grafted europium complexes}, issn = {1932-7447}, doi = {10.1021/Jp808411e}, year = {2009}, abstract = {Europium ions were introduced in SiO2 and MCM-41 via two different pathways: (1) grafting the europium complexes with two alkoxide structures, 3-(2-imidazolin-1-yl)-propyl-triethoxysilane (IPTES) and aminopropyltrimethoxysilane (APTMS), and (2) functionalization of the SiO2 support with silicon 4- carboxylbutyltriethoxide followed by subsequent addition of the europium ions. The new materials were characterized using nitrogen adsorption isotherms at -196 degrees C, thermogravimetric analysis, scanning electron microscopy, transmission electron microscopy, powder X-ray diffraction, Fourier transform infrared, NMR, DR-UV-vis, steady-state emission and excitation, and time-resolved photoluminescence spectroscopy. Spectral changes found in the time-resolved photoluminscence spectra strongly point to the distribution of europium ions on a range of environments in both SiO2 and MCM-41 supports. The average europium photoluminescence lifetimes decrease within the order: Eu3+-IPTES/SiO2 (550 mu s) > Eu3+-APTMS/SiO2 (425 mu s) > Eu3+-APTMS/MCM-41 (370 mu s) > Eu3+-IPTES/MCM-41 (320 mu s) > Eu3+-CABES/SiO2 (240 mu s). The photoluminescence quantum efficiency has the largest value, of 22\%, for Eu3+-IPTES/SiO2, while the most reduced value, of 9\%, was measured for Eu3+-CABES/SiO2.}, language = {en} } @article{TiseanuLorenzFonfriaGessneretal.2009, author = {Tiseanu, Carmen and Lorenz-Fonfria, Victor A. and Geßner, Andr{\´e} and Kumke, Michael Uwe and Gagea, Bogdan}, title = {Comparative luminescence study of terbium-exchanged zeolites silylated with alkoxysilanes}, issn = {0957-4522}, doi = {10.1007/s10854-008-9597-1}, year = {2009}, abstract = {Terbium-exchanged ZSM-5, MOR and (H)BEA zeolites were silylated with phenyl-, vinyl- and hexadecyl trimethoxysilanes via a post-synthesis grafting. All samples were investigated by means of PXRD, FT-IR, TGA, physical adsorption, DR-UV-Vis and time-resolved photoluminescence spectroscopy. From the comparison of the photoluminescence decays of terbium-exchanged in parent (non-silylated) and silylated zeolites, it resulted that the silylation efficiency of the various alkoxysilanes is determined by the type of zeolite and follows the sequences: phenyl > vinyl > hexadecyl > parent for ZSM-5, hexadecyl a parts per thousand phenyl a parts per thousand vinyl > parent for MOR and hexadecyl > phenyl a parts per thousand vinyl > a parts per thousand parent for BEA zeolites, respectively.}, language = {en} }