@article{HaaseArlinghausTentschertetal.2011, author = {Haase, Andrea and Arlinghaus, Heinrich F. and Tentschert, Jutta and Jungnickel, Harald and Graf, Philipp and Mantion, Alexandre and Draude, Felix and Galla, Sebastian and Plendl, Johanna and Goetz, Mario E. and Masic, Admir and Meier, Wolfgang P. and Thuenemann, Andreas F. and Taubert, Andreas and Luch, Andreas}, title = {Application of Laser Postionization Secondary Neutral Mass Spectrometry/Time-of-Flight Secondary Ion Mass Spectrometry in Nanotoxicology: Visualization of Nanosilver in Human Macrophages and Cellular Responses}, series = {ACS nano}, volume = {5}, journal = {ACS nano}, number = {4}, publisher = {American Chemical Society}, address = {Washington}, issn = {1936-0851}, doi = {10.1021/nn200163w}, pages = {3059 -- 3068}, year = {2011}, abstract = {Silver nanoparticles (SNP) are the subject of worldwide commercialization because of their antimicrobial effects. Yet only little data on their mode of action exist. Further, only few techniques allow for visualization and quantification of unlabeled nanoparticles inside cells. To study SNP of different sizes and coatings within human macrophages, we introduce a novel laser postionization secondary neutral mass spectrometry (Laser-SNMS) approach and prove this method superior to the widely applied confocal Raman and transmission electron microscopy. With time-of-flight secondary ion mass spectrometry (TOF-SIMS) we further demonstrate characteristic fingerprints in the lipid pattern of the cellular membrane indicative of oxidative stress and membrane fluidity changes. Increases of protein carbonyl and heme oxygenase-1 levels in treated cells confirm the presence of oxidative stress biochemically. Intriguingly, affected phagocytosis reveals as highly sensitive end point of SNP-mediated adversity In macrophages. The cellular responses monitored are. hierarchically linked, but follow individual kinetics and are partially reversible.}, language = {en} } @article{TentschertDraudeJungnickeletal.2013, author = {Tentschert, J. and Draude, F. and Jungnickel, H. and Haase, A. and Mantion, Alexandre and Galla, S. and Thuenemann, Andreas F. and Taubert, Andreas and Luch, A. and Arlinghaus, H. F.}, title = {TOF-SIMS analysis of cell membrane changes in functional impaired human macrophages upon nanosilver treatment}, series = {Surface and interface analysis : an international journal devoted to the development and application of techniques for the analysis surfaces, interfaces and thin films}, volume = {45}, journal = {Surface and interface analysis : an international journal devoted to the development and application of techniques for the analysis surfaces, interfaces and thin films}, number = {1}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0142-2421}, doi = {10.1002/sia.5155}, pages = {483 -- 485}, year = {2013}, abstract = {Silver nanoparticles (SNP) are among the most commercialized nanoparticles. Here, we show that peptide-coated SNP cause functional impairment of human macrophages. A dose-dependent inhibition of phagocytosis is observed after nanoparticle treatment, and pretreatment of cells with N-acetyl cysteine (NAC) can counteract the phagocytosis disturbances caused by SNP. Using the surface-sensitive mode of time-of-flight secondary ion mass spectrometry, in combination with multivariate statistical methods, we studied the composition of cell membranes in human macrophages upon exposure to SNP with and without NAC preconditioning. This method revealed characteristic changes in the lipid pattern of the cellular membrane outer leaflet in those cells challenged by SNP. Statistical analyses resulted in 19 characteristic ions, which can be used to distinguish between NAC pretreated and untreated macrophages. The present study discusses the assignments of surface cell membrane phospholipids for the identified ions and the resulting changes in the phospholipid pattern of treated cells. We conclude that the adverse effects in human macrophages caused by SNP can be partially reversed through NAC administration. Some alterations, however, remained.}, language = {en} }