@article{CasseShkilnyyLindersetal.2012, author = {Casse, Olivier and Shkilnyy, Andriy and Linders, J{\"u}rgen and Mayer, Christian and H{\"a}ussinger, Daniel and V{\"o}lkel, Antje and Th{\"u}nemann, Andreas F. and Dimova, Rumiana and C{\"o}lfen, Helmut and Meier, Wolfgang P. and Schlaad, Helmut and Taubert, Andreas}, title = {Solution behavior of double-hydrophilic block copolymers in dilute aqueous solution}, series = {Macromolecules : a publication of the American Chemical Society}, volume = {45}, journal = {Macromolecules : a publication of the American Chemical Society}, number = {11}, publisher = {American Chemical Society}, address = {Washington}, issn = {0024-9297}, doi = {10.1021/ma300621g}, pages = {4772 -- 4777}, year = {2012}, abstract = {The self-assembly of double-hydrophilic poly(ethylene oxide)-poly(2-methyl-2-oxazoline) diblock copolymers in water has been studied. Isothermal titration calorimetry, small-angle X-ray scattering, and analytical ultracentrifugation suggest that only single polymer chains are present in solution. In contrast, light scattering and transmission electron microscopy detect aggregates with radii of ca. 100 nm. Pulsed field gradient NMR spectroscopy confirms the presence of aggregates, although only 2\% of the polymer chains undergo aggregation. Water uptake experiments indicate differences in the hydrophilicity of the two blocks, which is believed to be the origin of the unexpected aggregation behavior (in accordance with an earlier study by Ke et al. [Macromolecules 2009, 42, 5339-5344]). The data therefore suggest that even in double-hydrophilic block copolymers, differences in hydrophilicity are sufficient to drive polymer aggregation, a phenomenon that has largely been overlooked or ignored so far.}, language = {en} }