@misc{MachatschekSchoeneRaschdorfetal.2019, author = {Machatschek, Rainhard Gabriel and Sch{\"o}ne, Anne-Christin and Raschdorf, Elisa and Ihlenburg, Ramona and Schulz, Burkhard and Lendlein, Andreas}, title = {Interfacial properties of morpholine-2,5-dione-based oligodepsipeptides and multiblock copolymers}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1106}, issn = {1866-8372}, doi = {10.25932/publishup-46975}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-469755}, pages = {170 -- 180}, year = {2019}, abstract = {Oligodepsipeptides (ODPs) with alternating amide and ester bonds prepared by ring-opening polymerization of morpholine-2,5-dione derivatives are promising matrices for drug delivery systems and building blocks for multifunctional biomaterials. Here, we elucidate the behavior of three telechelic ODPs and one multiblock copolymer containing ODP blocks at the air-water interface. Surprisingly, whereas the oligomers and multiblock copolymers crystallize in bulk, no crystallization is observed at the air-water interface. Furthermore, polarization modulation infrared reflection absorption spectroscopy is used to elucidate hydrogen bonding and secondary structures in ODP monolayers. The results will direct the development of the next ODP-based biomaterial generation with tailored properties for highly sophisticated applications.}, language = {en} } @misc{IhlenburgLehnenKoetzetal.2021, author = {Ihlenburg, Ramona and Lehnen, Anne-Catherine and Koetz, Joachim and Taubert, Andreas}, title = {Sulfobetaine Cryogels for Preferential Adsorption of Methyl Orange from Mixed Dye Solutions}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1093}, issn = {1866-8372}, doi = {10.25932/publishup-48898}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-488987}, pages = {13}, year = {2021}, abstract = {New cryogels for selective dye removal from aqueous solution were prepared by free radical polymerization from the highly water-soluble crosslinker N,N,N',N'-tetramethyl-N,N'-bis(2-ethylmethacrylate)-propyl-1,3-diammonium dibromide and the sulfobetaine monomer 2-(N-3-sulfopropyl-N,N-dimethyl ammonium)ethyl methacrylate. The resulting white and opaque cryogels have micrometer sized pores with a smaller substructure. They adsorb methyl orange (MO) but not methylene blue (MB) from aqueous solution. Mixtures of MO and MB can be separated through selective adsorption of the MO to the cryogels while the MB remains in solution. The resulting cryogels are thus candidates for the removal of hazardous organic substances, as exemplified by MO and MB, from water. Clearly, it is possible that the cryogels are also potentially interesting for removal of other compounds such as pharmaceuticals or pesticides, but this must be investigated further.}, language = {en} }