@phdthesis{Boese2017, author = {Boese, Adrian Daniel}, title = {Theorie und Berechnung intermolekularer Wechselwirkungen}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-412867}, school = {Universit{\"a}t Potsdam}, pages = {235}, year = {2017}, abstract = {Die klassische Physik/Chemie unterscheidet zwischen drei Bindungstypen: Der kovalenten Bindung, der ionischen Bindung und der metallischen Bindung. Molek{\"u}le untereinander werden hingegen durch schwache Wechselwirkungen zusammen gehalten, sie sind trotz ihrer schwachen Kr{\"a}fte weniger verstanden, aber dabei nicht weniger wichtig. In zukunftsweisenden Gebieten wie der Nanotechnologie, der Supramolekularen Chemie und Biochemie sind sie von elementarer Bedeutung. Um schwache, intermolekulare Wechselwirkungen zu beschreiben, vorauszusagen und zu verstehen, sind sie zun{\"a}chst theoretisch zu erfassen. Hierzu geh{\"o}ren verschiedene quantenchemische Methoden, die in dieser Arbeit vorgestellt, verglichen, weiterentwickelt und schließlich auch exemplarisch auf Problemstellungen in der Chemie angewendet werden. Aufbauend auf einer Hierarchie von Methoden unterschiedlicher Genauigkeit werden sie f{\"u}r diese Ziele eingesetzt, ausgearbeitet und kombiniert. Berechnet wird die Elektronenstruktur, also die Verteilung und Energie von Elektronen, die im Wesentlichen die Atome zusammen halten. Da Ungenauigkeiten von der Beschreibung der Elektronenstruktur von den verwendeten Methoden abh{\"a}ngen, kann man die Effekte detailliert untersuchen, sie beschreiben und darauf aufbauend weiter entwickeln, um sie anschließend an verschiedenen Modellen zu testen. Die Geschwindigkeit der Berechnungen mit modernen Computern ist eine wesentliche, zu ber{\"u}cksichtigende Komponente, da im Allgemeinen die Genauigkeit mit der Rechenzeit exponentiell steigt, und die damit an die Grenzen der M{\"o}glichkeiten stoßen muss. Die genaueste der verwendeten Methoden basiert auf der Coupled-Cluster-Theorie, die sehr gute Voraussagen erm{\"o}glicht. F{\"u}r diese wird eine sogenannte spektroskopische Genauigkeit mit Abweichungen von wenigen Wellenzahlen erzielt, was Vergleiche mit experimentellen Daten zeigen. Eine M{\"o}glichkeit zur N{\"a}herung von hochgenauen Methoden basiert auf der Dichtefunktionaltheorie: Hier wurde das „Boese-Martin for Kinetics" (BMK)-Funktional entwickelt, dessen Funktionalform sich in vielen nach 2010 ver{\"o}ffentlichten Dichtefunktionalen wiederfindet. Mit Hilfe der genaueren Methoden lassen sich schließlich semiempirische Kraftfelder zur Beschreibung intermolekularer Wechselwirkungen f{\"u}r individuelle Systeme parametrisieren, diese ben{\"o}tigen weit weniger Rechenzeit als die Methoden, die auf der genauen Berechnung der Elektronenstruktur von Molek{\"u}len beruhen. F{\"u}r gr{\"o}ßere Systeme lassen sich auch verschiedene Methoden kombinieren. Dabei wurden Einbettungsverfahren verfeinert und mit neuen methodischen Ans{\"a}tzen vorgeschlagen. Sie verwenden sowohl die symmetrieadaptierte St{\"o}rungstheorie als auch die quantenchemische Einbettung von Fragmenten in gr{\"o}ßere, quantenchemisch berechnete Systeme. Die Entwicklungen neuer Methoden beziehen ihren Wert im Wesentlichen durch deren Anwendung: In dieser Arbeit standen zun{\"a}chst die Wasserstoffbr{\"u}cken im Vordergrund. Sie z{\"a}hlen zu den st{\"a}rkeren intermolekularen Wechselwirkungen und sind nach wie vor eine Herausforderung. Im Gegensatz dazu sind van-der-Waals Wechselwirkungen relativ einfach durch Kraftfelder zu beschreiben. Deshalb sind viele der heute verwendeten Methoden f{\"u}r Systeme, in denen Wasserstoffbr{\"u}cken dominieren, vergleichsweise schlecht. Eine Untersuchung molekularer Aggregate mit Auswirkungen intermolekularer Wechselwirkungen auf die Schwingungsfrequenzen von Molek{\"u}len schließt sich an. Dabei wird auch {\"u}ber die sogenannte starrer-Rotor-harmonischer-Oszillator-N{\"a}herung hinausgegangen. Eine weitreichende Anwendung behandelt Adsorbate, hier die von Molek{\"u}len auf ionischen/metallischen Oberfl{\"a}chen. Sie k{\"o}nnen mit {\"a}hnlichen Methoden behandelt werden wie die intermolekularen Wechselwirkungen, und sind mit speziellen Einbettungsverfahren sehr genau zu beschreiben. Die Resultate dieser theoretischen Berechnungen stimulierten eine Neubewertung der bislang bekannten experimentellen Ergebnisse. Molekulare Kristalle sind ein {\"a}ußerst wichtiges Forschungsgebiet. Sie werden durch schwache Wechselwirkungen zusammengehalten, die von van-der-Waals Kr{\"a}ften bis zu Wasserstoffbr{\"u}cken reichen. Auch hier wurden neuentwickelte Methoden eingesetzt, die eine interessante, mindestens ebenso genaue Alternative zu den derzeit g{\"a}ngigen Methoden darstellen. Von daher sind die entwickelten Methoden, als auch deren Anwendung {\"a}ußerst vielf{\"a}ltig. Die behandelten Berechnungen der Elektronenstruktur erstrecken sich von den sogenannten post-Hartree-Fock-Methoden {\"u}ber den Einsatz der Dichtefunktionaltheorie bis zu semiempirischen Kraftfeldern und deren Kombinationen. Die Anwendung reicht von einzelnen Molek{\"u}len in der Gasphase {\"u}ber die Adsorption auf Oberfl{\"a}chen bis zum molekularen Festk{\"o}rper.}, language = {de} } @phdthesis{Breternitz2023, author = {Breternitz, Joachim}, title = {Structural systematic investigations of photovoltaic absorber materials}, school = {Universit{\"a}t Potsdam}, pages = {189}, year = {2023}, abstract = {The direct conversion of light from the sun into usable forms of energy marks one of the central cornerstones of the change of our living from the use of fossil, non-renewable energy resources towards a more sustainable economy. Besides the necessary societal changes necessary, it is the understanding of the solids employed that is of particular importance for the success of this target. In this work, the principles and approaches of systematic-crystallographic characterisation and systematisation of solids is used and employed to allow a directed tuning of the materials properties. The thorough understanding of the solid-state forms hereby the basis, on which more applied approaches are founded. Two material systems, which are considered as promising solar absorber materials, are at the core of this work: halide perovskites and II-IV-N2 nitride materials. While the first is renowned for its high efficiencies and rapid development in the last years, the latter is putting an emphasis on true sustainability in that toxic and scarce elements are avoided.}, language = {en} } @phdthesis{Schmidt2020, author = {Schmidt, Bernhard V. K. J.}, title = {Polymers, self-assembly and materials}, doi = {10.25932/publishup-48481}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-484819}, school = {Universit{\"a}t Potsdam}, pages = {VI, 350}, year = {2020}, abstract = {In der vorliegenden Arbeit wurden die Selbstorganisation von hydrophilen Polymeren, verst{\"a}rkte Hydrogele, sowie anorganische/Polymer Hybridmaterialien untersucht. Dabei beschreibt die Arbeit den Weg von Polymersynthese mittels verschiedener Methoden {\"u}ber Polymerselbstanordnung bis zur Herstellung von Polymermaterialien mit vielversprechenden Eigenschaften f{\"u}r zuk{\"u}nftige Anwendungen. Hydrophile Polymere wurden verwendet, um Mehrphasensysteme herzustellen, Wasser-in-Wasser Emulsionen zu bilden und selbstangeordneten Strukturen zu erzeugen, z. B. Partikel/Aggregate oder hohle Strukturen aus komplett wasserl{\"o}slichen Bausteinen. Die Strukturbildung in w{\"a}ssriger Umgebung wurde ferner f{\"u}r supramolekulare Hydrogele mit definierter Unterstruktur und reversiblem Gelierungsverhalten eingesetzt. Auf dem Gebiet der Hydrogele wurde das anorganische Material graphitisches Kohlenstoffnitrid (g-CN) als Photoinitiator f{\"u}r die Hydrogelsynthese und als Verst{\"a}rker der Gelstruktur beschrieben. Hierbei konnten Hydrogele mit herausragenden Eigenschaften generiert werden, z. B. hohe Kompressibilit{\"a}t, hohe Speichermodule oder Gleitf{\"a}higkeit. Die Kombinationen von g-CN mit verschiedenen Polymeren erlaubte es zudem neue Materialien f{\"u}r die Photokatalyse bereitzustellen. Als weiteres anorganisches Material wurden Metall-organische Ger{\"u}ste (MOFs) mit Polymeren kombiniert. Es konnte gezeigt werden, dass die Verwendung von MOFs in der Polymersynthese einen starken Einfluss auf die erzeugte Polymerstruktur hat und MOFs als Katalysator f{\"u}r Polymerisationen verwendet werden k{\"o}nnen. Zuletzt wurde die MOF Synthese an sich untersucht, wobei Polymeradditive oder L{\"o}sungsmittel eingesetzt wurden um die kristalline Struktur der MOFs zu modulieren. Insgesamt wurden hier verschiedene Errungenschaften f{\"u}r die Polymerchemie beschrieben, z.B. neuartige hydrophile Polymere und Hydrogele, die zur Zeit wichtige Materialien im Polymerbereich durch ihre vielversprechenden Anwendungen im biomedizinischen Sektor darstellen. Außerdem ergab die Kombination von Polymeren mit Materialien aus anderen Bereichen der Chemie, z. B. g-CN und MOFs, neue Materialien mit bemerkenswerten Eigenschaften, die ebenfalls von Interesse f{\"u}r zuk{\"u}nftige Anwendungen sind, z. B. Beschichtungen, Partikeltechnologie und Katalyse.}, language = {en} } @phdthesis{Schlaad2005, author = {Schlaad, Helmut}, title = {Polymer self-assembly : adding complexity to mesostructures of diblock copolymers by specific interactions}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0001824}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {In dieser Arbeit wurde die Rolle selektiver, nicht-kovalenter Wechselwirkungen bei der Selbstorganisation von Diblockcopolymeren untersucht. Durch Einf{\"u}hrung elektrostatischer, dipolarer Wechselwirkungen oder Wasserstoffbr{\"u}ckenbindungen sollte es gelingen, komplexe Mesostrukturen zu erzeugen und die Ordnung vom Nanometerbereich auf gr{\"o}ßere L{\"a}ngenskalen auszuweiten. Diese Arbeit ist im Rahmen von Biomimetik zu sehen, da sie Konzepte der synthetischen Polymer- und Kolloidchemie und Grundprinzipien der Strukturbildung in supramolekularen und biologischen Systemen verbindet. Folgende Copolymersysteme wurden untersucht: (i) Blockionomere, (ii) Blockcopolymere mit chelatisierenden Acetoacetoxyeinheiten und (iii) Polypeptid-Blockcopolymere.}, language = {en} } @phdthesis{Yuan2015, author = {Yuan, Jiayin}, title = {Poly(Ionic Liquid)s}, school = {Universit{\"a}t Potsdam}, pages = {300}, year = {2015}, language = {en} } @phdthesis{Bouakline2023, author = {Bouakline, Foudhil}, title = {Manifestations of Quantum-Mechanical Effects in Molecular Reaction Dynamics}, school = {Universit{\"a}t Potsdam}, pages = {316}, year = {2023}, abstract = {This habilitation thesis summarises the research work performed by the author during the last quindecennial period. The dissertation reflects his main research interests, which revolve around quantum dynamics of small-sized molecular systems, including their interactions with electromagnetic radiation or dissipative environments. This covers various dynamical processes that involve bound-bound, bound-free, and free-free molecular transitions. The latter encompass light-triggered rovibrational or rovibronic dynamics in bound molecules, molecular photodissociation induced by weak or strong laser fields, state-to-state reactive and/or inelastic molecular collisions, and phonon-driven vibrational relaxation of adsorbates at solid surfaces. Although the dissertation covers different topics of molecular reaction dynamics, most of these studies focus on nuclear quantum effects and their manifestations in experimental measures. The latter are assessed through comparison between quantum and classical predictions, and/or direct confrontation of theory and experiment. Most well known quantum concepts and effects will be encountered in this work. Yet, almost all these quantum notions find their roots in the central pillar of quantum theory, namely, the quantum superposition principle. Indeed, quantum coherence is the main source of most quantum effects, including interference, entanglement, and even tunneling. Thus, the common and predominant theme of all the investigations of this thesis is quantum coherence, and the survival or quenching of subsequent interference effects in various molecular processes. The lion's share of the dissertation is devoted to two associated quantum concepts, which are usually overlooked in computational molecular dynamics, viz. the Berry phase and identical nuclei symmetry. The importance of the latter in dynamical molecular processes and their direct fingerprints in experimental observables also rely very much on quantum coherence and entanglement. All these quantum phenomena are thoroughly discussed within the four main topics that form the core of this thesis. Each topic is described in a separate chapter, where it is briefly summarised and then illustrated with three peer-reviewed publications. The first topic deals with the relevance of quantum coherence/interference in molecular collisions, with a focus on the hydrogen-exchange reaction, H+H2 --> H2+H, and its isotopologues. For these collision processes, the significance of interference of probability amplitudes arises because of the existence of two main scattering pathways. The latter could be inelastic and reactive scattering, direct and time-delayed scattering, or two encircling reaction paths that loop in opposite senses around a conical intersection (CI) of the H3 molecular system. Our joint theoretical-experimental investigations of these processes reveal strong interference and geometric phase (GP) effects in state-to-state reaction probabilities and differential cross sections. However, these coherent effects completely cancel in integral cross sections and reaction rate constants, due to efficient dephasing of interference between the different scattering amplitudes. As byproducts of these studies, we highlight the discovery of two novel scattering mechanisms, which contradict conventional textbook pictures of molecular reaction dynamics. The second topic concerns the effect of the Berry phase on molecular photodynamics at conical intersections. To understand this effect, we developed a topological approach that separates the total molecular wavefunction of an unbound molecular system into two components, which wind in opposite senses around the conical intersection. This separation reveals that the only effect of the geometric phase is to change the sign of the relative phase of these two components. This in turn leads to a shift in the interference pattern of the molecular system---a phase shift that is reminiscient of the celebrated Aharonov-Bohm effect. This procedure is numerically illustrated with photodynamics at model standard CIs, as well as strong-field dissociation of diatomics at light-induced conical intersections (LICIs). Besides the fundamental aspect of these studies, their findings allow to interpret and predict the effect of the GP on the state-resolved or angle-resolved spectra of pump-probe experimental schemes, particularly the distributions of photofragments in molecular photodissociation experiments. The third topic pertains to the role of the indistinguishability of identical nuclei in molecular reaction dynamics, with an emphasis on dynamical localization in highly symmetric molecules. The main object of these studies is whether nuclear-spin statistics allow dynamical localization of the electronic, vibrational, or even rotational density on a specific molecular substructure or configuration rather than on another one which is identical (indistinguishable). Group-theoretic analysis of the symmetrized molecular wavefunctions of these systems shows that nuclear permutation symmetry engenders quantum entanglement between the eigenstates of the different molecular degrees of freedom. This subsequently leads to complete quenching of dynamical localization over indistinguishable molecular substructures---an observation that is in sharp contradiction with well known textbook views of iconic molecular processes. This is illustrated with various examples of quantum dynamics in symmetric double-well achiral molecules, such as the prototypical umbrella inversion motion of ammonia, electronic Kekul{\´e} dynamics in the benzene molecule, and coupled electron-nuclear dynamics in laser-induced indirect photodissociation of the dihydrogen molecular cation. The last part of the thesis is devoted to the development of approximate wavefunction approaches for phonon-induced vibrational relaxation of adsorbates (system) at surfaces (bath). Due to the so-called 'curse of dimensionality', these system-bath complexes cannot be handled with standard wavefunction methods. To alleviate the exponential scaling of the latter, we developed approximate yet quite accurate numerical schemes that have a polynomial scaling with respect to the bath dimensionality. The corresponding algorithms combine symmetry-based reductions of the full vibrational Hilbert space and iterative Krylov techniques. These approximate wavefunction approaches resemble the 'Bixon-Jortner model' and the more general 'quantum tier model'. This is illustrated with the decay of H-Si (D-Si) vibrations on a fully H(D)-covered silicon surface, which is modelled with a phonon-bath of more than two thousand oscillators. These approximate methods allow reliable estimation of the adsorbate vibrational lifetimes, and provide some insight into vibration-phonon couplings at solid surfaces. Although this topic is mainly computational, the developed wavefunction approaches permit to describe quantum entanglement between the system and bath states, and to embody some coherent effects in the time-evolution of the (sub-)system, which cannot be accounted for with the widely used 'reduced density matrix formalism'.}, language = {en} } @phdthesis{Strauss2023, author = {Strauß, Volker}, title = {Laser-induced carbonization - from fundamentals to applications}, doi = {10.25932/publishup-59199}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-591995}, school = {Universit{\"a}t Potsdam}, pages = {VIII, 78, A245}, year = {2023}, abstract = {Fabricating electronic devices from natural, renewable resources has been a common goal in engineering and materials science for many years. In this regard, carbon is of special significance due to its biological compatibility. In the laboratory, carbonized materials and their composites have been proven as promising solutions for a range of future applications in electronics, optoelectronics, or catalytic systems. On the industrial scale, however, their application is inhibited by tedious and expensive preparation processes and a lack of control over the processing and material parameters. Therefore, we are exploring new concepts for the direct utilization of functional carbonized materials in electronic applications. In particular, laser-induced carbonization (carbon laser-patterning (CLaP)) is emerging as a new tool for the precise and selective synthesis of functional carbon-based materials for flexible on-chip applications. We developed an integrated approach for on-the-spot laser-induced synthesis of flexible, carbonized films with specific functionalities. To this end, we design versatile precursor inks made from naturally abundant starting compounds and reactants to cast films which are carbonized with an infrared laser to obtain functional patterns of conductive porous carbon networks. In our studies we obtained deep mechanistic insights into the formation process and the microstructure of laser-patterned carbons (LP-C). We shed light on the kinetic reaction mechanism based on the interplay between the precursor properties and the reaction conditions. Furthermore, we investigated the use of porogens, additives, and reactants to provide a toolbox for the chemical and physical fine-tuning of the electronic and surface properties and the targeted integration of functional sites into the carbon network. Based on this knowledge, we developed prototype resistive chemical and mechanical sensors. In further studies, we show the applicability of LP-C as electrode materials in electrocatalytic and charge-storage applications. To put our findings into a common perspective, our results are embedded into the context of general carbonization strategies, fundamentals of laser-induced materials processing, and a broad literature review on state-of-the-art laser-carbonization, in the general part.}, language = {en} } @phdthesis{Titirici2013, author = {Titirici, Maria-Magdalena}, title = {Hydrothermal carbonisation}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-66885}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {The world's appetite for energy is producing growing quantities of CO2, a pollutant that contributes to the warming of the planet and which currently cannot be removed or stored in any significant way. Other natural reserves are also being devoured at alarming rates and current assessments suggest that we will need to identify alternative sources in the near future. With the aid of materials chemistry it should be possible to create a world in which energy use needs not be limited and where usable energy can be produced and stored wherever it is needed, where we can minimize and remediate emissions as new consumer products are created, whilst healing the planet and preventing further disruptive and harmful depletion of valuable mineral assets. In achieving these aims, the creation of new and very importantly greener industries and new sustainable pathways are crucial. In all of the aforementioned applications, new materials based on carbon, ideally produced via inexpensive, low energy consumption methods, using renewable resources as precursors, with flexible morphologies, pore structures and functionalities, are increasingly viewed as ideal candidates to fulfill these goals. The resulting materials should be a feasible solution for the efficient storage of energy and gases. At the end of life, such materials ideally must act to improve soil quality and to act as potential CO2 storage sinks. This is exactly the subject of this habilitation thesis: an alternative technology to produce carbon materials from biomass in water using low carbonisation temperatures and self-generated pressures. This technology is called hydrothermal carbonisation. It has been developed during the past five years by a group of young and talented researchers working under the supervision of Dr. Titirici at the Max-Planck Institute of Colloids and Interfaces and it is now a well-recognised methodology to produce carbon materials with important application in our daily lives. These applications include electrodes for portable electronic devices, filters for water purification, catalysts for the production of important chemicals as well as drug delivery systems and sensors.}, language = {en} } @phdthesis{Kumke2005, author = {Kumke, Michael Uwe}, title = {Huminstoffe und organische Modellliganden und ihre Wechselwirkung mit Metallionen und polyzyklischen aromatischen Kohlenwasserstoffen}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-6066}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {Immobilisierung bzw. Mobilisierung und Transport von Schadstoffen in der Umwelt, besonders in den Kompartimenten Boden und Wasser, sind von fundamentaler Bedeutung f{\"u}r unser ({\"U}ber)Leben auf der Erde. Einer der Hauptreaktionspartner f{\"u}r organische und anorganische Schadstoffe (Xenobiotika) in der Umwelt sind Huminstoffe (HS). HS sind Abbauprodukte pflanzlichen und tierischen Gewebes, die durch eine Kombination von chemischen und biologischen Ab- und Umbauprozessen entstehen. Bedingt durch ihre Genese stellen HS außerordentlich heterogene Stoffsysteme dar, die eine Palette von verschiedenartigen Wechselwirkungen mit Schadstoffen zeigen. Die Untersuchung der fundamentalen Wechselwirkungsmechanismen stellt ebenso wie deren quantitative Beschreibung h{\"o}chste Anforderungen an die Untersuchungsmethoden. Zur qualitativen und quantitativen Charakterisierung der Wechselwirkungen zwischen HS und Xenobiotika werden demnach analytische Methoden ben{\"o}tigt, die bei der Untersuchung von extrem heterogenen Systemen aussagekr{\"a}ftige Daten zu liefern verm{\"o}gen. Besonders spektroskopische Verfahren, wie z.B. lumineszenz-basierte Verfahren, besitzen neben der hervorragenden Selektivit{\"a}t und Sensitivit{\"a}t, auch eine Multidimensionalit{\"a}t (bei der Lumineszenz sind es die Beobachtungsgr{\"o}ßen Intensit{\"a}t IF, Anregungswellenl{\"a}nge lex, Emissionswellenl{\"a}nge lem und Fluoreszenzabklingzeit tF), die es gestattet, auch heterogene Systeme wie HS direkt zu untersuchen. Zur Charakterisierung k{\"o}nnen sowohl die intrinsischen Fluoreszenzeigenschaften der HS als auch die von speziell eingef{\"u}hrten Lumineszenzsonden verwendet werden. In beiden F{\"a}llen werden die zu Grunde liegenden fundamentalen Konzepte der Wechselwirkungen von HS mit Xenobiotika untersucht und charakterisiert. F{\"u}r die intrinsische Fluoreszenz der HS konnte gezeigt werden, dass neben molekularen Strukturen besonders die Verkn{\"u}pfung der Fluorophore im Gesamt-HS-Molek{\"u}l von Bedeutung ist. Konformative Freiheit und die Nachbarschaft zu als Energieakzeptor fungierenden HS-eigenen Gruppen sind wichtige Komponenten f{\"u}r die Charakteristik der HS-Fluoreszenz. Die L{\"o}schung der intrinsischen Fluoreszenz durch Metallkomplexierung ist demnach auch das Resultat der ver{\"a}nderten konformativen Freiheit der HS durch die gebundenen Metallionen. Es zeigte sich, dass abh{\"a}ngig vom Metallion sowohl L{\"o}schung als auch Verst{\"a}rkung der intrinsischen HS-Fluoreszenz beobachtet werden kann. Als extrinsische Lumineszenzsonden mit wohl-charakterisierten photophysikalischen Eigenschaften wurden polyzyklische aromatische Kohlenwasserstoffe und Lanthanoid-Ionen eingesetzt. Durch Untersuchungen bei sehr niedrigen Temperaturen (10 K) konnte erstmals die Mikroumgebung von an HS gebundenen hydrophoben Xenobiotika untersucht werden. Im Vergleich mit Raumtemperaturexperimenten konnte gezeigt werden, dass hydrophobe Xenobiotika an HS-gebunden in einer Mikroumgebung, die in ihrer Polarit{\"a}t analog zu kurzkettigen Alkoholen ist, vorliegen. F{\"u}r den Fall der Metallkomplexierung wurden Energietransferprozesse zwischen HS und Lanthanoidionen bzw. zwischen verschiedenen, gebundenen Lanthanoidionen untersucht. Basierend auf diesen Messungen k{\"o}nnen Aussagen {\"u}ber die beteiligten elektronischen Zust{\"a}nde der HS einerseits und Entfernungen von Metallbindungsstellen in HS selbst angeben werden. Es ist dabei zu beachten, dass die Experimente in L{\"o}sung bei realen Konzentrationen durchgef{\"u}hrt wurden. Aus Messung der Energietransferraten k{\"o}nnen direkte Aussagen {\"u}ber Konformations{\"a}nderungen bzw. Aggregationsprozesse von HS abgeleitet werden.}, subject = {Fluoreszenz}, language = {de} } @phdthesis{Boerner2009, author = {B{\"o}rner, Hans Gerhard}, title = {Exploiting self-organization and functionality of peptides for polymer science}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-29066}, school = {Universit{\"a}t Potsdam}, year = {2009}, abstract = {Controlling interactions in synthetic polymers as precisely as in proteins would have a strong impact on polymer science. Advanced structural and functional control can lead to rational design of, integrated nano- and microstructures. To achieve this, properties of monomer sequence defined oligopeptides were exploited. Through their incorporation as monodisperse segments into synthetic polymers we learned in recent four years how to program the structure formation of polymers, to adjust and exploit interactions in such polymers, to control inorganic-organic interfaces in fiber composites and induce structure in Biomacromolecules like DNA for biomedical applications.}, language = {en} }