@article{HeinzeBochFischeretal.2011, author = {Heinze, Eric and Boch, Steffen and Fischer, Markus and Hessenm{\"o}ller, Dominik and Klenk, Bernd and M{\"u}ller, J{\"o}rg and Prati, Daniel and Schulze, Ernst-Detlef and Seele, Carolin and Socher, Stephanie and Halle, Stefan}, title = {Habitat use of large ungulates in northeastern Germany in relation to forest management}, series = {Forest ecology and management}, volume = {261}, journal = {Forest ecology and management}, number = {2}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0378-1127}, doi = {10.1016/j.foreco.2010.10.022}, pages = {288 -- 296}, year = {2011}, abstract = {Estimating large herbivore density has been a major area of research in recent decades. Previous studies monitoring ungulate density, however, focused mostly on determining animal abundance, and did not interpret animal distribution in relation to habitat parameters. We surveyed large ungulates in the Biodiversity Exploratory Schorfheide-Chorin using faecal pellet group counts. This allowed us to explore the link between relative ungulate abundance, habitat use, and browsing damage on trees in a region with several types of forest, including unharvested and age-class beech forests, as well as age-class pine forests. Our results demonstrate that roe deer and fallow deer relative abundance is negatively correlated with large tree cover, and positively correlated with the cover of small shrubs (Rubus spec., Vaccinium spec.), and winter food supply. Habitat use of roe deer and fallow deer, as estimated by counting faecal pellet groups, revealed a preference for mature pine forests, and avoidance of deciduous forests. This differential habitat use is explained by different distributions of high quality food resources during winter. The response of deer to understory cover differed between roe deer and fallow deer at high cover percentages. The amount of browsing damage we observed on coniferous trees was not consistent with the relative deer abundance. Browsing damage was consistently higher on most deciduous trees, except for beech saplings which sustained less damage when roe deer density was low. Because roe deer is a highly selective feeder, it was reported to affect tree diversity by feeding only on trees with high nutritional value. Consequently, we propose that managing the number of all deer species by hunting is necessary to allow successful forest regeneration. Such an adjustment to deer numbers would need to account for both current tree diversity and alternative food resources. Our findings may be applicable to other forest landscapes in northeastern Germany including mature pine stands and differently harvested deciduous forests.}, language = {en} } @article{BirkhoferDiekoetterBochetal.2011, author = {Birkhofer, Klaus and Diekoetter, Tim and Boch, Steffen and Fischer, Markus and M{\"u}ller, J{\"o}rg and Socher, Stephanie and Wolters, Volkmar}, title = {Soil fauna feeding activity in temperate grassland soils increases with legume and grass species richness}, series = {Soil biology \& biochemistry}, volume = {43}, journal = {Soil biology \& biochemistry}, number = {10}, publisher = {Elsevier}, address = {Oxford}, issn = {0038-0717}, doi = {10.1016/j.soilbio.2011.07.008}, pages = {2200 -- 2207}, year = {2011}, abstract = {Edaphic fauna contributes to important ecosystem functions in grassland soils such as decomposition and nutrient mineralization. Since this functional role is likely to be altered by global change and associated shifts in plant communities, a thorough understanding of large scale drivers on below-ground processes independent of regional differences in soil type or climate is essential. We investigated the relationship between abiotic (soil properties, management practices) and biotic (plant functional group composition, vegetation characteristics, soil fauna abundance) predictors and feeding activity of soil fauna after accounting for sample year and study region. Our study was carried out over a period of two consecutive years in 92 agricultural grasslands in three regions of Germany, spanning a latitudinal gradient of more than 500 km. A structural equation model suggests that feeding activity of soil fauna as measured by the bait-lamina test was positively related to legume and grass species richness in both years. Most probably, a diverse vegetation promotes feeding activity of soil fauna via alterations of both microclimate and resource availability. Feeding activity of soil fauna also increased with earthworm biomass via a pathway over Collembola abundance. The effect of earthworms on the feeding activity in soil may be attributed to their important role as ecosystem engineers. As no additional effects of agricultural management such as fertilization, livestock density or number of cuts on bait consumption were observed, our results suggest that the positive effect of legume and grass species richness on the feeding activity in soil fauna is a general one that will not be overruled by regional differences in management or environmental conditions. We thus suggest that agri-environment schemes aiming at the protection of belowground activity and associated ecosystem functions in temperate grasslands may generally focus on maintaining plant diversity, especially with regard to the potential effects of climate change on future vegetation structure.}, language = {en} }