@phdthesis{Schmidtke2009, author = {Schmidtke, Andrea}, title = {Biodiversity effects on the performance of terrestrial plant and phytoplankton communities}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-38936}, school = {Universit{\"a}t Potsdam}, year = {2009}, abstract = {Die {\"O}kosysteme unserer Erde sind durch das rasante Artensterben infolge von Umweltver{\"a}nderungen durch den Menschen und des globalen Klimawandels stark betroffen. Mit den Auswirkungen dieses Artenverlustes und der damit einhergehenden Ver{\"a}nderung der Diversit{\"a}t besch{\"a}ftigt sich die heutige Biodiversit{\"a}tsforschung. Spezieller wird der Effekt der Diversit{\"a}t auf {\"O}kosystemprozesse wie beispielsweise den Biomasseaufbau von Prim{\"a}rproduzenten oder der Resistenz einer Gemeinschaft gegen die Einwanderung neuer Arten untersucht. Die Quantifizierung des Einflusses der Diversit{\"a}t auf die Prim{\"a}rproduktion und das Verst{\"a}ndnis der zugrunde liegenden Mechanismen ist von besonderer Wichtigkeit. In terrestrischen Pflanzengemeinschaften wurde bereits ein positiver Diversit{\"a}tseffekt auf die Gemeinschaftsbiomasse beobachtet. Dies wird haupts{\"a}chlich durch den Komplementarit{\"a}ts- und/oder den Dominanzeffekt erkl{\"a}rt. Die Komplementarit{\"a}t zwischen Arten ist beispielsweise bei Unterschieden in der Ressourcenausnutzung gegeben (z.B. unterschiedliche Wurzeltiefen). Diese kann zu einer besseren N{\"a}hrstoffausnutzung in diverseren Gemeinschaften f{\"u}hren, die letztlich deren h{\"o}here Biomassen erkl{\"a}rt. Der Dominanzeffekt hingegen beruht auf der in diverseren Gemeinschaften h{\"o}heren Wahrscheinlichkeit, eine hochproduktive Art anzutreffen, was letztlich die h{\"o}here Biomasse der Gemeinschaft verursacht. Diversit{\"a}tseffekte auf {\"O}kosystemprozesse wurden bisher haupts{\"a}chlich auf der Gemeinschaftsebene untersucht. Analysen {\"u}ber die Reaktionen, die alle Arten einer Gemeinschaft einschließen, fehlen bisher. Daher wurde der Einfluss der Diversit{\"a}t auf die individuelle Performance von Pflanzenarten innerhalb des Biodiversit{\"a}tsprojektes „Das Jena Experiment" untersucht. Dieses Experiment umfasst 60 Arten, die charakteristisch f{\"u}r Mitteleurop{\"a}ische Graslandschaften sind. Die Arten wurden in die 4 funktionellen Gruppen Gr{\"a}ser, kleine Kr{\"a}uter, große Kr{\"a}uter und Leguminosen eingeteilt. Im Freilandversuch zeigte sich, dass mit steigender Artenzahl die individuelle Pflanzenh{\"o}he zunahm, w{\"a}hrend die individuelle oberirdische Biomasse sank. Der positive Diversit{\"a}tseffekt auf die pflanzliche Gemeinschaftsbiomasse kann folglich nicht auf der individuellen oberirdischen Biomassezunahme beruhen. {\"U}berdies reagierten die einzelnen funktionellen Gruppen und sogar die einzelnen Arten innerhalb einer funktionellen Gruppe unterschiedlich auf Diversit{\"a}tsver{\"a}nderungen. Folglich ist zu vermuten, dass einige {\"O}kosystemprozesse auf Gemeinschaftsebene durch die Reaktionen von bestimmten funktionellen Gruppen bzw. Arten hervorgerufen werden. Diversit{\"a}tseffekte auf Gemeinschaftsbiomassen wurden bislang haupts{\"a}chlich mit terrestrischen Pflanzen und weniger mit frei-schwebenden Algenarten (Phytoplankton) erforscht. Demzufolge wurde der Einfluss der Diversit{\"a}t auf die Biomasse von Phytoplankton-Gemeinschaften experimentell untersucht, wobei es sowohl zu negativen als auch positiven Diversit{\"a}tseffekten kam. Eine negative Beziehung zwischen Diversit{\"a}t und Gemeinschaftsbiomasse zeigte sich, wenn schnell-w{\"u}chsige Algenarten nur geringe Biomassen in Mono- und Mischkultur aufbauten. Die vorhandenen N{\"a}hrstoffe in der Mischkultur wurden von den schnell-w{\"u}chsigen Arten monopolisiert und folglich standen sie den langsam-w{\"u}chsigen Algenarten, welche viel Biomasse in Monokultur aufbauten, nicht mehr zur Verf{\"u}gung. Zu einem positiven Diversit{\"a}tseffekt auf die Gemeinschaftsbiomasse kam es, wenn die Artengemeinschaft eine positive Beziehung zwischen Wachstumsrate und Biomasse in Monokultur zeigte, sodass die schnell-w{\"u}chsige Algenarten viel Biomasse aufbauten. Da diese schnell-w{\"u}chsigen Algen in der Mischkultur dominant wurden, bestand die Gemeinschaft letztlich aus hoch-produktiven Algenarten, was zu einer erh{\"o}hten Gesamtbiomasse f{\"u}hrte. Diese beiden Versuchsans{\"a}tze verdeutlichen Mechanismen f{\"u}r die unterschiedlichen Reaktionen der Gemeinschaften auf Diversit{\"a}tsver{\"a}nderungen, welche auch f{\"u}r terrestrische Pflanzengemeinschaften gefunden wurden. Ein anderer wichtiger {\"O}kosystemprozess, der von der Diversit{\"a}t beeinflusst wird, ist die Anf{\"a}lligkeit von Gemeinschaften gegen{\"u}ber invasiven Arten (Invasibilit{\"a}t). Die Invasibilit{\"a}t wird von einer Vielzahl von Faktoren beeinflusst und demzufolge wurde der Effekt der Diversit{\"a}t und der Produktivit{\"a}t (N{\"a}hrstoffgehalt) auf die Invasibilit{\"a}t von Phytoplankton-Gemeinschaften in An- und Abwesenheit eines Herbivoren untersucht. Die zwei funktionell unterschiedlichen invasiven Arten waren die Blaualge Cylindrospermopsis raciborskii (schlecht fressbar) und der Phytoflagellat Cryptomonas sp. (gut fressbar). Es zeigte sich, dass der Fraßdruck, welcher selber durch die Produktivit{\"a}t beeinflusst wurde, einen bedeutenden Effekt auf die Invasibilit{\"a}t von Phytoplankton-Gemeinschaften hat. Die funktionellen Eigenschaften der invasiven und residenten Arten waren zudem bedeutender als die Artenzahl.}, language = {en} } @phdthesis{Naaf2011, author = {Naaf, Tobias}, title = {Floristic homogenization and impoverishment : herb layer changes over two decades in deciduous forest patches of the Weser-Elbe region (NW Germany)}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-52446}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {Human-induced alterations of the environment are causing biotic changes worldwide, including the extinction of species and a mixing of once disparate floras and faunas. One type of biological communities that is expected to be particularly affected by environmental alterations are herb layer plant communities of fragmented forests such as those in the west European lowlands. However, our knowledge about current changes in species diversity and composition in these communities is limited due to a lack of adequate long-term studies. In this thesis, I resurveyed the herb layer communities of ancient forest patches in the Weser-Elbe region (NW Germany) after two decades using 175 semi-permanent plots. The general objectives were (i) to quantify changes in plant species diversity considering also between-community (β) and functional diversity, (ii) to determine shifts in species composition in terms of species' niche breadth and functional traits and (iii) to find indications on the most likely environmental drivers for the observed changes. These objectives were pursued with four independent research papers (Chapters 1-4) whose results were brought together in a General Discussion. Alpha diversity (species richness) increased by almost four species on average, whereas β diversity tended to decrease (Chapter 1). The latter is interpreted as a beginning floristic homogenization. The observed changes were primarily the result of a spread of native habitat generalists that are able to tolerate broad pH and moisture ranges. The changes in α and β diversity were only significant when species abundances were neglected (Chapters 1 and 2), demonstrating that the diversity changes resulted mainly from gains and losses of low-abundance species. This study is one of the first studies in temperate Europe that demonstrates floristic homogenization of forest plant communities at a larger than local scale. The diversity changes found at the taxonomic level did not result in similar changes at the functional level (Chapter 2). The likely reason is that these communities are functionally "buffered". Single communities involve most of the functional diversity of the regional pool, i.e., they are already functionally rich, while they are functionally redundant among each other, i.e., they are already homogeneous. Independent of taxonomic homogenization, the abundance of 30 species decreased significantly (Chapter 4). These species included 12 ancient forest species (i.e., species closely tied to forest patches with a habitat continuity > 200 years) and seven species listed on the Red List of endangered plant species in NW Germany. If these decreases continue over the next decades, local extinctions may result. This biotic impoverishment would seriously conflict with regional conservation goals. Community assembly mechanisms changed at the local level particularly at sites that experienced disturbance by forest management activities between the sampling periods (Chapter 3). Disturbance altered community assembly mechanisms in two ways: (i) it relaxed environmental filters and allowed the coexistence of different reproduction strategies, as reflected by a higher diversity of reproductive traits at the time of the resurvey, and (ii) it enhanced light availability and tightened competitive filters. These limited the functional diversity with respect to canopy height and selected for taller species. Thirty-one winner and 30 loser species, which had significantly increased or decreased in abundance, respectively, were characterized by various functional traits and ecological performances to find indications on the most likely environmental drivers for the observed floristic changes (Chapter 4). Winner species had higher seed longevity, flowered later in the season and had more often an oceanic distribution compared to loser species. Loser species tended to have a higher specific leaf area, to be more susceptible to deer browsing and to have a performance optimum at higher soil pH values compared to winner species. Multiple logistic regression analyses indicated that disturbances due to forest management interventions were the primary cause of the species shifts. As one of the first European resurvey studies, this study provides indications that an enhanced browsing pressure due to increased deer densities and increasingly warmer winters are important drivers. The study failed to demonstrate that eutrophication and acidification due to atmospheric deposition substantially drive herb layer changes. The restriction of the sample to the most base-rich sites in the region is discussed as a likely reason. Furthermore, the decline of several ancient forest species is discussed as an indication that the forest patches are still paying off their "extinction debt", i.e., exhibit a delayed response to forest fragmentation.}, language = {en} }