@phdthesis{Hippel2024, author = {Hippel, Barbara von}, title = {Long-term bacteria-fungi-plant associations in permafrost soils inferred from palaeometagenomics}, doi = {10.25932/publishup-63600}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-636009}, school = {Universit{\"a}t Potsdam}, pages = {xii, 198}, year = {2024}, abstract = {The arctic is warming 2 - 4 times faster than the global average, resulting in a strong feedback on northern ecosystems such as boreal forests, which cover a vast area of the high northern latitudes. With ongoing global warming, the treeline subsequently migrates northwards into tundra areas. The consequences of turning ecosystems are complex: on the one hand, boreal forests are storing large amounts of global terrestrial carbon and act as a carbon sink, dragging carbon dioxide out of the global carbon cycle, suggesting an enhanced carbon uptake with increased tree cover. On the other hand, with the establishment of trees, the albedo effect of tundra decreases, leading to enhanced soil warming. Meanwhile, permafrost thaws, releasing large amounts of previously stored carbon into the atmosphere. So far, mainly vegetation dynamics have been assessed when studying the impact of warming onto ecosystems. Most land plants are living in close symbiosis with bacterial and fungal communities, sustaining their growth in nutrient poor habitats. However, the impact of climate change on these subsoil communities alongside changing vegetation cover remains poorly understood. Therefore, a better understanding of soil community dynamics on multi millennial timescales is inevitable when addressing the development of entire ecosystems. Unravelling long-term cross-kingdom dependencies between plant, fungi, and bacteria is not only a milestone for the assessment of warming on boreal ecosystems. On top, it also is the basis for agriculture strategies to sustain society with sufficient food in a future warming world. The first objective of this thesis was to assess ancient DNA as a proxy for reconstructing the soil microbiome (Manuscripts I, II, III, IV). Research findings across these projects enable a comprehensive new insight into the relationships of soil microorganisms to the surrounding vegetation. First, this was achieved by establishing (Manuscript I) and applying (Manuscript II) a primer pair for the selective amplification of ancient fungal DNA from lake sediment samples with the metabarcoding approach. To assess fungal and plant co-variation, the selected primer combination (ITS67, 5.8S) amplifying the ITS1 region was applied on samples from five boreal and arctic lakes. The obtained data showed that the establishment of fungal communities is impacted by warming as the functional ecological groups are shifting. Yeast and saprotroph dominance during the Late Glacial declined with warming, while the abundance of mycorrhizae and parasites increased with warming. The overall species richness was also alternating. The results were compared to shotgun sequencing data reconstructing fungi and bacteria (Manuscripts III, IV), yielding overall comparable results to the metabarcoding approach. Nonetheless, the comparison also pointed out a bias in the metabarcoding, potentially due to varying ITS lengths or copy numbers per genome. The second objective was to trace fungus-plant interaction changes over time (Manuscripts II, III). To address this, metabarcoding targeting the ITS1 region for fungi and the chloroplast P6 loop for plants for the selective DNA amplification was applied (Manuscript II). Further, shotgun sequencing data was compared to the metabarcoding results (Manuscript III). Overall, the results between the metabarcoding and the shotgun approaches were comparable, though a bias in the metabarcoding was assumed. We demonstrated that fungal shifts were coinciding with changes in the vegetation. Yeast and lichen were mainly dominant during the Late Glacial with tundra vegetation, while warming in the Holocene lead to the expansion of boreal forests with increasing mycorrhizae and parasite abundance. Aside, we highlighted that Pinaceae establishment is dependent on mycorrhizal fungi such as Suillineae, Inocybaceae, or Hyaloscypha species also on long-term scales. The third objective of the thesis was to assess soil community development on a temporal gradient (Manuscripts III, IV). Shotgun sequencing was applied on sediment samples from the northern Siberian lake Lama and the soil microbial community dynamics compared to ecosystem turnover. Alongside, podzolization processes from basaltic bedrock were recovered (Manuscript III). Additionally, the recovered soil microbiome was compared to shotgun data from granite and sandstone catchments (Manuscript IV, Appendix). We assessed if the establishment of the soil microbiome is dependent on the plant taxon and as such comparable between multiple geographic locations or if the community establishment is driven by abiotic soil properties and as such the bedrock area. We showed that the development of soil communities is to a great extent driven by the vegetation changes and temperature variation, while time only plays a minor role. The analyses showed general ecological similarities especially between the granite and basalt locations, while the microbiome on species-level was rather site-specific. A greater number of correlated soil taxa was detected for deep-rooting boreal taxa in comparison to grasses with shallower roots. Additionally, differences between herbaceous taxa of the late Glacial compared to taxa of the Holocene were revealed. With this thesis, I demonstrate the necessity to investigate subsoil community dynamics on millennial time scales as it enables further understanding of long-term ecosystem as well as soil development processes and such plant establishment. Further, I trace long-term processes leading to podzolization which supports the development of applied carbon capture strategies under future global warming.}, language = {en} } @phdthesis{Stiegler2023, author = {Stiegler, Jonas}, title = {Mobile link functions in unpredictable agricultural landscapes}, doi = {10.25932/publishup-62202}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-622023}, school = {Universit{\"a}t Potsdam}, pages = {155}, year = {2023}, abstract = {Animal movement is a crucial aspect of life, influencing ecological and evolutionary processes. It plays an important role in shaping biodiversity patterns, connecting habitats and ecosystems. Anthropogenic landscape changes, such as in agricultural environments, can impede the movement of animals by affecting their ability to locate resources during recurring movements within home ranges and, on a larger scale, disrupt migration or dispersal. Inevitably, these changes in movement behavior have far-reaching consequences on the mobile link functions provided by species inhabiting such extensively altered matrix areas. In this thesis, I investigate the movement characteristics and activity patterns of the European hare (Lepus europaeus), aiming to understand their significance as a pivotal species in fragmented agricultural landscapes. I reveal intriguing results that shed light on the importance of hares for seed dispersal, the influence of personality traits on behavior and space use, the sensitivity of hares to extreme weather conditions, and the impacts of GPS collaring on mammals' activity patterns and movement behavior. In Chapter I, I conducted a controlled feeding experiment to investigate the potential impact of hares on seed dispersal. By additionally utilizing GPS data of hares in two contrasting landscapes, I demonstrated that hares play a vital role, acting as effective mobile linkers for many plant species in small and isolated habitat patches. The analysis of seed intake and germination success revealed that distinct seed traits, such as density, surface area, and shape, profoundly affect hares' ability to disperse seeds through endozoochory. These findings highlight the interplay between hares and plant communities and thus provide valuable insights into seed dispersal mechanisms in fragmented landscapes. By employing standardized behavioral tests in Chapter II, I revealed consistent behavioral responses among captive hares while simultaneously examining the intricate connection between personality traits and spatial patterns within wild hare populations. This analysis provides insights into the ecological interactions and dynamics within hare populations in agricultural habitats. Examining the concept of animal personality, I established a link between personality traits and hare behavior. I showed that boldness, measured through standardized tests, influences individual exploration styles, with shy and bold hares exhibiting distinct space use patterns. In addition to providing valuable insights into the role of animal personality in heterogeneous environments, my research introduced a novel approach demonstrating the feasibility of remotely assessing personality types using animal-borne sensors without additional disturbance of the focal individual. While climate conditions severely impact the activity and, consequently, the fitness of wildlife species across the globe, in Chapter III, I uncovered the sensitivity of hares to temperature, humidity, and wind speed during their peak reproduction period. I found a strong response in activity to high temperatures above 25°C, with a particularly pronounced effect during temperature extremes of over 35°C. The non-linear relationship between temperature and activity was characterized by contrasting responses observed for day and night. These findings emphasize the vulnerability of hares to climate change and the potential consequences for their fitness and population dynamics with the ongoing rise of temperature. Since such insights can only be obtained through capturing and tagging free-ranging animals, I assessed potential impacts and the recovery process post-collar attachment in Chapter IV. For this purpose, I examined the daily distances moved and the temporal-associated activity of 1451 terrestrial mammals out of 42 species during their initial tracking period. The disturbance intensity and the speed of recovery varied across species, with herbivores, females, and individuals captured and collared in relatively secluded study areas experiencing more pronounced disturbances due to limited anthropogenic influences. Mobile linkers are essential for maintaining biodiversity as they influence the dynamics and resilience of ecosystems. Furthermore, their ability to move through fragmented landscapes makes them a key component for restoring disturbed sites. Individual movement decisions determine the scale of mobile links, and understanding variations in space use among individuals is crucial for interpreting their functions. Climate change poses further challenges, with wildlife species expected to adjust their behavior, especially in response to high-temperature extremes, and comprehending the anthropogenic influence on animal movements will remain paramount to effective land use planning and the development of successful conservation strategies. This thesis provides a comprehensive ecological understanding of hares in agricultural landscapes. My research findings underscore the importance of hares as mobile linkers, the influence of personality traits on behavior and spatial patterns, the vulnerability of hares to extreme weather conditions, and the immediate consequences of collar attachment on mammalian movements. Thus, I contribute valuable insights to wildlife conservation and management efforts, aiding in developing strategies to mitigate the impact of environmental changes on hare populations. Moreover, these findings enable the development of methodologies aimed at minimizing the impacts of collaring while also identifying potential biases in the data, thereby benefiting both animal welfare and the scientific integrity of localization studies.}, language = {en} } @phdthesis{Courtin2023, author = {Courtin, J{\´e}r{\´e}my}, title = {Biodiversity changes in Siberia between quaternary glacial and interglacial stages}, doi = {10.25932/publishup-59584}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-595847}, school = {Universit{\"a}t Potsdam}, pages = {vi, 199}, year = {2023}, abstract = {Der vom Menschen verursachte Klimawandel wirkt sich auf die biologische Vielfalt der Erde und damit auf die {\"O}kosysteme und ihre Leistungen aus. Die {\"O}kosysteme in den hohen Breitengraden sind aufgrund der verst{\"a}rkten Erw{\"a}rmung an den Polen noch st{\"a}rker betroffen als der Rest der n{\"o}rdlichen Hemisph{\"a}re. Dennoch ist es schwierig, die Dynamik von {\"O}kosystemen in den hohen Breitengraden vorherzusagen, da die Wechselwirkungen zwischen abiotischen und biotischen Komponenten sehr komplex sind. Da die Vergangenheit der Schl{\"u}ssel zur Zukunft ist, ist die Interpretation vergangener {\"o}kologischer Ver{\"a}nderungen m{\"o}glich, um laufende Prozesse besser zu verstehen. Im Quart{\"a}r durchlief das Pleistoz{\"a}n mehrere glaziale und interglaziale Phasen, welche die {\"O}kosysteme der Vergangenheit beeinflussten. W{\"a}hrend des letzten Glazials bedeckte die pleistoz{\"a}ne Steppentundra den gr{\"o}ßten Teil der unvergletscherten n{\"o}rdlichen Hemisph{\"a}re und verschwand parallel zum Aussterben der Megafauna am {\"U}bergang zum Holoz{\"a}n (vor etwa 11 700 Jahren). Der Ursprung des R{\"u}ckgangs der Steppentundra ist nicht gut erforscht, und die Kenntnis {\"u}ber die Mechanismen, die zu den Ver{\"a}nderungen in den vergangenen Lebensgemeinschaften und {\"O}kosystemen gef{\"u}hrt haben, ist von hoher Priorit{\"a}t, da sie wahrscheinlich mit denen vergleichbar sind, die sich auf moderne {\"O}kosysteme auswirken. Durch die Entnahme von See- oder Permafrostkernsedimenten kann die vergangene Artenvielfalt an den {\"U}berg{\"a}ngen zwischen Eis- und Zwischeneiszeiten untersucht werden. Sibirien und Beringia waren der Ursprung der Ausbreitung der Steppentundra, weshalb die Untersuchung dieses Gebiets hohe Priorit{\"a}t hat. Bis vor kurzem waren Makrofossilien und Pollen die g{\"a}ngigsten Methoden. Sie dienen der Rekonstruktion vergangener Ver{\"a}nderungen in der Zusammensetzung der Bev{\"o}lkerung, haben aber ihre Grenzen und Schw{\"a}chen. Seit Ende des 20. Jahrhunderts kann auch sediment{\"a}re alte DNA (sedaDNA) untersucht werden. Mein Hauptziel war es, durch den Einsatz von sedaDNA-Ans{\"a}tzen wissenschaftliche Beweise f{\"u}r Ver{\"a}nderungen in der Zusammensetzung und Vielfalt der {\"O}kosysteme der n{\"o}rdlichen Hemisph{\"a}re am {\"U}bergang zwischen den quart{\"a}ren Eiszeiten und Zwischeneiszeiten zu liefern. In dieser Arbeit liefere ich Momentaufnahmen ganzer alter {\"O}kosysteme und beschreibe die Ver{\"a}nderungen in der Zusammensetzung zwischen Quart{\"a}rglazialen und Interglazialen und best{\"a}tige die Vegetationszusammensetzung sowie die r{\"a}umlichen und zeitlichen Grenzen der pleistoz{\"a}nen Steppentundra. Ich stelle einen allgemeinen Verlust der Pflanzenvielfalt fest, wobei das Aussterben der Pflanzen parallel zum Aussterben der Megafauna verlief. Ich zeige auf, wie der Verlust der biotischen Widerstandsf{\"a}higkeit zum Zusammenbruch eines zuvor gut etablierten Systems f{\"u}hrte, und diskutiere meine Ergebnisse im Hinblick auf den laufenden Klimawandel. Mit weiteren Arbeiten zur Eingrenzung von Verzerrungen und Grenzen kann sedaDNA parallel zu den etablierteren Makrofossilien- und Pollenans{\"a}tzen verwendet werden oder diese sogar ersetzen, da meine Ergebnisse die Robustheit und das Potenzial von sedaDNA zur Beantwortung neuer pal{\"a}o{\"o}kologischer Fragen wie Ver{\"a}nderungen der Pflanzenvielfalt und -verluste belegen und Momentaufnahmen ganzer alter Biota liefern.}, language = {en} } @phdthesis{Leins2023, author = {Leins, Johannes A.}, title = {Combining model detail with large scales}, doi = {10.25932/publishup-58283}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-582837}, school = {Universit{\"a}t Potsdam}, pages = {xv, 168}, year = {2023}, abstract = {The global climate crisis is significantly contributing to changing ecosystems, loss of biodiversity and is putting numerous species on the verge of extinction. In principle, many species are able to adapt to changing conditions or shift their habitats to more suitable regions. However, change is progressing faster than some species can adjust, or potential adaptation is blocked and disrupted by direct and indirect human action. Unsustainable anthropogenic land use in particular is one of the driving factors, besides global heating, for these ecologically critical developments. Precisely because land use is anthropogenic, it is also a factor that could be quickly and immediately corrected by human action. In this thesis, I therefore assess the impact of three climate change scenarios of increasing intensity in combination with differently scheduled mowing regimes on the long-term development and dispersal success of insects in Northwest German grasslands. The large marsh grasshopper (LMG, Stethophyma grossum, Linn{\´e} 1758) is used as a species of reference for the analyses. It inhabits wet meadows and marshes and has a limited, yet fairly good ability to disperse. Mowing and climate conditions affect the development and mortality of the LMG differently depending on its life stage. The specifically developed simulation model HiLEG (High-resolution Large Environmental Gradient) serves as a tool for investigating and projecting viability and dispersal success under different climate conditions and land use scenarios. It is a spatially explicit, stage- and cohort-based model that can be individually configured to represent the life cycle and characteristics of terrestrial insect species, as well as high-resolution environmental data and the occurrence of external disturbances. HiLEG is a freely available and adjustable software that can be used to support conservation planning in cultivated grasslands. In the three case studies of this thesis, I explore various aspects related to the structure of simulation models per se, their importance in conservation planning in general, and insights regarding the LMG in particular. It became apparent that the detailed resolution of model processes and components is crucial to project the long-term effect of spatially and temporally confined events. Taking into account conservation measures at the regional level has further proven relevant, especially in light of the climate crisis. I found that the LMG is benefiting from global warming in principle, but continues to be constrained by harmful mowing regimes. Land use measures could, however, be adapted in such a way that they allow the expansion and establishment of the LMG without overly affecting agricultural yields. Overall, simulation models like HiLEG can make an important contribution and add value to conservation planning and policy-making. Properly used, simulation results shed light on aspects that might be overlooked by subjective judgment and the experience of individual stakeholders. Even though it is in the nature of models that they are subject to limitations and only represent fragments of reality, this should not keep stakeholders from using them, as long as these limitations are clearly communicated. Similar to HiLEG, models could further be designed in such a way that not only the parameterization can be adjusted as required, but also the implementation itself can be improved and changed as desired. This openness and flexibility should become more widespread in the development of simulation models.}, language = {en} } @phdthesis{Kahl2022, author = {Kahl, Sandra}, title = {Evolutionary adaptive responses to rapid climate change in plants}, doi = {10.25932/publishup-55648}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-556483}, school = {Universit{\"a}t Potsdam}, pages = {127}, year = {2022}, abstract = {The ongoing climate change is altering the living conditions for many organisms on this planet at an unprecedented pace. Hence, it is crucial for the survival of species to adapt to these changing conditions. In this dissertation Silene vulgaris is used as a model organism to understand the adaption strategies of widely distributed plant species to the current climate change. Especially plant species that possess a wide geographic range are expected to have a high phenotypic plasticity or to show genetic differentiation in response to the different climate conditions they grow in. However, they are often underrepresented in research. In the greenhouse experiment presented in this thesis, I examined the phenotypic responses and plasticity in S. vulgaris to estimate its' adaptation potential. Seeds from 25 wild European populations were collected along a latitudinal gradient and grown in a greenhouse under three different precipitation (65 mm, 75 mm, 90 mm) and two different temperature regimes (18°C, 21°C) that resembled a possible climate change scenario for central Europe. Afterwards different biomass and fecundity-related plant traits were measured. The treatments significantly influenced the plants but did not reveal a latitudinal difference in response to climate treatments for most plant traits. The number of flowers per individual however, showed a stronger plasticity in northern European populations (e.g., Swedish populations) where numbers decreased more drastically with increased temperature and decreased precipitation. To gain an even deeper understanding of the adaptation of S. vulgaris to climate change it is also important to reveal the underlying phylogeny of the sampled populations. Therefore, I analysed their population genetic structure through whole genome sequencing via ddRAD. The sequencing revealed three major genetic clusters in the S. vulgaris populations sampled in Europe: one cluster comprised Southern European populations, one cluster Western European populations and another cluster contained central European populations. A following analysis of experimental trait responses among the clusters to the climate-change scenario showed that the genetic clusters significantly differed in biomass-related traits and in the days to flowering. However, half of the traits showed parallel response patterns to the experimental climate-change scenario. In addition to the potential geographic and genetic adaptation differences to climate change this dissertation also deals with the response differences between the sexes in S. vulgaris. As a gynodioecious species populations of S. vulgaris consist of female and hermaphrodite individuals and the sexes can differ in their morphological traits which is known as sexual dimorphism. As climate change is becoming an important factor influencing plant morphology it remains unclear if and how different sexes may respond in sexually dimorphic species. To examine this question the sex of each individual plant was determined during the greenhouse experiment and the measured plant traits were analysed accordingly. In general, hermaphrodites had a higher number of flowers but a lower number of leaves than females. With regards to the climate change treatment, I found that hermaphrodites showed a milder negative response to higher temperatures in the number of flowers produced and in specific leaf area (SLA) compared to females. Synthesis - The significant treatment response in Silene vulgaris, independent of population origin in most traits suggests a high degree of universal phenotypic plasticity. Also, the three European intraspecific genetic lineages detected showed comparable parallel response patterns in half of the traits suggesting considerable phenotypic plasticity. Hence, plasticity might represent a possible adaptation strategy of this widely distributed species during ongoing and future climatic changes. The results on sexual dimorphism show that females and hermaphrodites are differing mainly in their number of flowers and females are affected more strongly by the experimental climate-change scenario. These results provide a solid knowledge basis on the sexual dimorphism in S. vulgaris under climate change, but further research is needed to determine the long-term impact on the breeding system for the species. In summary this dissertation provides a comprehensive insight into the adaptation mechanisms and consequences of a widely distributed and gynodioecious plant species and leverages our understanding of the impact of anthropogenic climate change on plants.}, language = {en} } @phdthesis{RomeroMujalli2019, author = {Romero Mujalli, Daniel}, title = {Ecological modeling of adaptive evolutionary responses to rapid climate change}, doi = {10.25932/publishup-43062}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-430627}, school = {Universit{\"a}t Potsdam}, pages = {167}, year = {2019}, abstract = {A contemporary challenge in Ecology and Evolutionary Biology is to anticipate the fate of populations of organisms in the context of a changing world. Climate change and landscape changes due to anthropic activities have been of major concern in the contemporary history. Organisms facing these threats are expected to respond by local adaptation (i.e., genetic changes or phenotypic plasticity) or by shifting their distributional range (migration). However, there are limits to their responses. For example, isolated populations will have more difficulties in developing adaptive innovations by means of genetic changes than interconnected metapopulations. Similarly, the topography of the environment can limit dispersal opportunities for crawling organisms as compared to those that rely on wind. Thus, populations of species with different life history strategy may differ in their ability to cope with changing environmental conditions. However, depending on the taxon, empirical studies investigating organisms' responses to environmental change may become too complex, long and expensive; plus, complications arising from dealing with endangered species. In consequence, eco-evolutionary modeling offers an opportunity to overcome these limitations and complement empirical studies, understand the action and limitations of underlying mechanisms, and project into possible future scenarios. In this work I take a modeling approach and investigate the effect and relative importance of evolutionary mechanisms (including phenotypic plasticity) on the ability for local adaptation of populations with different life strategy experiencing climate change scenarios. For this, I performed a review on the state of the art of eco-evolutionary Individual-Based Models (IBMs) and identify gaps for future research. Then, I used the results from the review to develop an eco-evolutionary individual-based modeling tool to study the role of genetic and plastic mechanisms in promoting local adaption of populations of organisms with different life strategies experiencing scenarios of climate change and environmental stochasticity. The environment was simulated through a climate variable (e.g., temperature) defining a phenotypic optimum moving at a given rate of change. The rate of change was changed to simulate different scenarios of climate change (no change, slow, medium, rapid climate change). Several scenarios of stochastic noise color resembling different climatic conditions were explored. Results show that populations of sexual species will rely mainly on standing genetic variation and phenotypic plasticity for local adaptation. Population of species with relatively slow growth rate (e.g., large mammals) - especially those of small size - are the most vulnerable, particularly if their plasticity is limited (i.e., specialist species). In addition, whenever organisms from these populations are capable of adaptive plasticity, they can buffer fitness losses in reddish climatic conditions. Likewise, whenever they can adjust their plastic response (e.g., bed-hedging strategy) they will cope with bluish environmental conditions as well. In contrast, life strategies of high fecundity can rely on non-adaptive plasticity for their local adaptation to novel environmental conditions, unless the rate of change is too rapid. A recommended management measure is to guarantee interconnection of isolated populations into metapopulations, such that the supply of useful genetic variation can be increased, and, at the same time, provide them with movement opportunities to follow their preferred niche, when local adaptation becomes problematic. This is particularly important for bluish and reddish climatic conditions, when the rate of change is slow, or for any climatic condition when the level of stress (rate of change) is relatively high.}, language = {en} } @phdthesis{Hornick2019, author = {Hornick, Thomas}, title = {Impact of climate change effects on diversity and function of pelagic heterotrophic bacteria studied in large-scale mesocosm facilities}, doi = {10.25932/publishup-42893}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-428936}, school = {Universit{\"a}t Potsdam}, pages = {199}, year = {2019}, abstract = {Seit der Industriellen Revolution steigt die Konzentration von Kohlenstoffdioxid (CO2) und anderen Treibhausgasen in der Erdatmosph{\"a}re stetig an, wodurch wesentliche Prozesse im Erdsystem beeinflusst werden. Dies wird mit dem Begriff „Klimawandel" umschrieben. Aquatische {\"O}kosysteme sind sehr stark davon betroffen, da sie als Integral vieler Prozesse in einer Landschaft fungieren. Ziel dieser Doktorarbeit war zu bestimmen, wie verschiedene Auswirkungen des Klimawandels die Gemeinschaftsstruktur und Aktivit{\"a}t von heterotrophen Bakterien in Gew{\"a}ssern ver{\"a}ndert, welche eine zentrale Rolle bei biogeochemischen Prozessen einnehmen. Diese Arbeit konzentriert sich auf zwei Aspekte des Klimawandels: (1) Ozeane nehmen einen Großteil des atmosph{\"a}rischen CO2 auf, welches im Meerwasser das chemische Gleichgewicht des Karbonatsystems verschiebt („Ozeanversauerung"). (2) Durch kontinuierlichen Anstieg der Erdoberfl{\"a}chentemperatur werden Ver{\"a}nderungen im Klimasystem der Erde vorhergesagt, welche u. a. die H{\"a}ufigkeit und Heftigkeit von episodischen Wetterereignissen (z.B. St{\"u}rme) verst{\"a}rken wird. Insbesondere Sommer-St{\"u}rme sind dabei in der Lage die sommerliche Temperaturschichtung der Wassers{\"a}ule in Seen zu zerst{\"o}ren. Beide Effekte des Klimawandels k{\"o}nnen weitreichende Auswirkungen auf Wasserchemie/-physik sowie die Verteilung von Organismen haben, was mittels Mesokosmen simuliert wurde. Dabei untersuchten wir den Einfluss der Ozeanversauerung auf heterotrophe bakterielle Prozesse in der Ostsee bei geringen Konzentrationen an gel{\"o}sten N{\"a}hrstoffen. Unsere Ergebnisse zeigen, dass Ozeanversauerungseffekte in Kombination mit N{\"a}hrstofflimitation indirekt das Wachstum von heterotrophen Bakterien durch ver{\"a}nderte trophische Interaktionen beeinflussen k{\"o}nnen und potentiell zu einer Erh{\"o}hung der Autotrophie des {\"O}kosystems f{\"u}hren. In einer weiteren Studie analysierten wir, wie Ozeanversauerung die Umsetzung und Qualit{\"a}t gel{\"o}sten organischen Materials (DOM) durch heterotrophe Bakterien beeinflussen kann. Die Ergebnisse weisen jedoch darauf hin, dass {\"A}nderungen in der DOM-Qualit{\"a}t durch heterotrophe bakterielle Prozesse mit zunehmender Ozeanversauerung unwahrscheinlich sind. Desweiteren wurde der Einfluss eines starken Sommer-Sturmes auf den stratifizierten, oligotroph-mesotrophen Stechlinsee simuliert. Mittels oberfl{\"a}chlicher Durchmischung in Mesokosmen wurde die bestehende Thermokline zerst{\"o}rt und die durchmischte Oberfl{\"a}chenwasserschicht vergr{\"o}ßert. Dies {\"a}nderte die physikalischen und chemischen Gradienten innerhalb der Wassers{\"a}ule. Effekte der Einmischung von Tiefenwasser {\"a}nderten in der Folge die Zusammensetzung der bakteriellen Gemeinschaftsstruktur und stimulierten das Wachstum filament{\"o}ser Cyanobakterien, die zu einer Cyanobakterien-Bl{\"u}te f{\"u}hrte und so maßgeblich die metabolischen Prozesse von heterotrophen Bakterien bestimmte. Unsere Studie gibt ein mechanistisches Verst{\"a}ndnis, wie Sommer-St{\"u}rme bakterielle Gemeinschaften und Prozesse f{\"u}r l{\"a}ngere Zeit w{\"a}hrend der sommerlichen Stratifizierung beeinflussen k{\"o}nnen. Die in dieser Arbeit pr{\"a}sentierten Ergebnisse zeigen Ver{\"a}nderungen bakterieller Gemeinschaften und Prozesse, welche mit dem einhergehenden Klimawandel erwartet werden k{\"o}nnen. Diese sollten bei Beurteilung klimarelevanter Fragen hinsichtlich eines zuk{\"u}nftigen Gew{\"a}sser-managements Ber{\"u}cksichtigung finden.}, language = {en} } @phdthesis{GrimmSeyfarth2017, author = {Grimm-Seyfarth, Annegret}, title = {Effects of climate change on a reptile community in arid Australia}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-412655}, school = {Universit{\"a}t Potsdam}, pages = {IX, 184}, year = {2017}, abstract = {Dies ist eine kumulative Dissertation, die drei Originalstudien umfasst (eine publiziert, eine in Revision, eine eingereicht; Stand Dezember 2017). Sie untersucht, wie Reptilienarten im ariden Australien auf verschiedene klimatische Parameter verschiedener r{\"a}umlicher Skalen reagieren und analysiert dabei zwei m{\"o}gliche zugrunde liegende Hauptmechanismen: Thermoregulatorisches Verhalten und zwischenartliche Wechselwirkungen. In dieser Dissertation wurden umfassende, individuenbasierte Felddaten verschiedener trophischer Ebenen kombiniert mit ausgew{\"a}hlten Feldexperimenten, statistischen Analysen, und Vorhersagemodellen. Die hier erkannten Mechanismen und Prozesse k{\"o}nnen nun genutzt werden, um m{\"o}gliche Ver{\"a}nderungen der ariden Reptiliengesellschaft in der Zukunft vorherzusagen. Dieses Wissen wird dazu beitragen, dass unser Grundverst{\"a}ndnis {\"u}ber die Konsequenzen des globalen Wandels verbessert und Biodiversit{\"a}tsverlust in diesem anf{\"a}lligen {\"O}kosystem verhindert wird.}, language = {en} } @phdthesis{Lohmann2012, author = {Lohmann, Dirk}, title = {Sustainable management of semi-arid African savannas under environmental and political change}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-65069}, school = {Universit{\"a}t Potsdam}, year = {2012}, abstract = {Drylands cover about 40\% of the earth's land surface and provide the basis for the livelihoods of 38\% of the global human population. Worldwide, these ecosystems are prone to heavy degradation. Increasing levels of dryland degradation result a strong decline of ecosystem services. In addition, in highly variable semi-arid environments changing future environmental conditions will potentially have severe consequences for productivity and ecosystem dynamics. Hence, global efforts have to be made to understand the particular causes and consequences of dryland degradation and to promote sustainable management options for semi-arid and arid ecosystems in a changing world. Here I particularly address the problem of semi-arid savanna degradation, which mostly occurs in form of woody plant encroachment. At this, I aim at finding viable sustainable management strategies and improving the general understanding of semi-arid savanna vegetation dynamics under conditions of extensive livestock production. Moreover, the influence of external forces, i.e. environmental change and land reform, on the use of savanna vegetation and on the ecosystem response to this land use is assessed. Based on this I identify conditions and strategies that facilitate a sustainable use of semi-arid savanna rangelands in a changing world. I extended an eco-hydrological model to simulate rangeland vegetation dynamics for a typical semi-arid savanna in eastern Namibia. In particular, I identified the response of semi-arid savanna vegetation to different land use strategies (including fire management) also with regard to different predicted precipitation, temperature and CO2 regimes. Not only environmental but also economic and political constraints like e.g. land reform programmes are shaping rangeland management strategies. Hence, I aimed at understanding the effects of the ongoing process of land reform in southern Africa on land use and the semi-arid savanna vegetation. Therefore, I developed and implemented an agent-based ecological-economic modelling tool for interactive role plays with land users. This tool was applied in an interdisciplinary empirical study to identify general patterns of management decisions and the between-farm cooperation of land reform beneficiaries in eastern Namibia. The eco-hydrological simulations revealed that the future dynamics of semi-arid savanna vegetation strongly depend on the respective climate change scenario. In particular, I found that the capacity of the system to sustain domestic livestock production will strongly depend on changes in the amount and temporal distribution of precipitation. In addition, my simulations revealed that shrub encroachment will become less likely under future climatic conditions although positive effects of CO2 on woody plant growth and transpiration have been considered. While earlier studies predicted a further increase in shrub encroachment due to increased levels of atmospheric CO2, my contrary finding is based on the negative impacts of temperature increase on the drought sensitive seedling germination and establishment of woody plant species. Further simulation experiments revealed that prescribed fires are an efficient tool for semi-arid rangeland management, since they suppress woody plant seedling establishment. The strategies tested have increased the long term productivity of the savanna in terms of livestock production and decreased the risk for shrub encroachment (i.e. savanna degradation). This finding refutes the views promoted by existing studies, which state that fires are of minor importance for the vegetation dynamics of semi-arid and arid savannas. Again, the difference in predictions is related to the bottleneck at the seedling establishment stage of woody plants, which has not been sufficiently considered in earlier studies. The ecological-economic role plays with Namibian land reform beneficiaries showed that the farmers made their decisions with regard to herd size adjustments according to economic but not according to environmental variables. Hence, they do not manage opportunistically by tracking grass biomass availability but rather apply conservative management strategies with low stocking rates. This implies that under the given circumstances the management of these farmers will not per se cause (or further worsen) the problem of savanna degradation and shrub encroachment due to overgrazing. However, as my results indicate that this management strategy is rather based on high financial pressure, it is not an indicator for successful rangeland management. Rather, farmers struggle hard to make any positive revenue from their farming business and the success of the Namibian land reform is currently disputable. The role-plays also revealed that cooperation between farmers is difficult even though obligatory due to the often small farm sizes. I thus propose that cooperation needs to be facilitated to improve the success of land reform beneficiaries.}, language = {en} } @phdthesis{Huber2010, author = {Huber, Veronika Emilie Charlotte}, title = {Climate impact on phytoplankton blooms in shallow lakes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-42346}, school = {Universit{\"a}t Potsdam}, year = {2010}, abstract = {Lake ecosystems across the globe have responded to climate warming of recent decades. However, correctly attributing observed changes to altered climatic conditions is complicated by multiple anthropogenic influences on lakes. This thesis contributes to a better understanding of climate impacts on freshwater phytoplankton, which forms the basis of the food chain and decisively influences water quality. The analyses were, for the most part, based on a long-term data set of physical, chemical and biological variables of a shallow, polymictic lake in north-eastern Germany (M{\"u}ggelsee), which was subject to a simultaneous change in climate and trophic state during the past three decades. Data analysis included constructing a dynamic simulation model, implementing a genetic algorithm to parameterize models, and applying statistical techniques of classification tree and time-series analysis. Model results indicated that climatic factors and trophic state interactively determine the timing of the phytoplankton spring bloom (phenology) in shallow lakes. Under equally mild spring conditions, the phytoplankton spring bloom collapsed earlier under high than under low nutrient availability, due to a switch from a bottom-up driven to a top-down driven collapse. A novel approach to model phenology proved useful to assess the timings of population peaks in an artificially forced zooplankton-phytoplankton system. Mimicking climate warming by lengthening the growing period advanced algal blooms and consequently also peaks in zooplankton abundance. Investigating the reasons for the contrasting development of cyanobacteria during two recent summer heat wave events revealed that anomalously hot weather did not always, as often hypothesized, promote cyanobacteria in the nutrient-rich lake studied. The seasonal timing and duration of heat waves determined whether critical thresholds of thermal stratification, decisive for cyanobacterial bloom formation, were crossed. In addition, the temporal patterns of heat wave events influenced the summer abundance of some zooplankton species, which as predators may serve as a buffer by suppressing phytoplankton bloom formation. This thesis adds to the growing body of evidence that lake ecosystems have strongly responded to climatic changes of recent decades. It reaches beyond many previous studies of climate impacts on lakes by focusing on underlying mechanisms and explicitly considering multiple environmental changes. Key findings show that climate impacts are more severe in nutrient-rich than in nutrient-poor lakes. Hence, to develop lake management plans for the future, limnologists need to seek a comprehensive, mechanistic understanding of overlapping effects of the multi-faceted human footprint on aquatic ecosystems.}, language = {en} }