@phdthesis{Kiss2024, author = {Kiss, Andrea}, title = {Moss-associated bacterial and archaeal communities of northern peatlands: key taxa, environmental drivers and potential functions}, doi = {10.25932/publishup-63064}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-630641}, school = {Universit{\"a}t Potsdam}, pages = {XX, 139, liv}, year = {2024}, abstract = {Moss-microbe associations are often characterised by syntrophic interactions between the microorganisms and their hosts, but the structure of the microbial consortia and their role in peatland development remain unknown. In order to study microbial communities of dominant peatland mosses, Sphagnum and brown mosses, and the respective environmental drivers, four study sites representing different successional stages of natural northern peatlands were chosen on a large geographical scale: two brown moss-dominated, circumneutral peatlands from the Arctic and two Sphagnum-dominated, acidic peat bogs from subarctic and temperate zones. The family Acetobacteraceae represented the dominant bacterial taxon of Sphagnum mosses from various geographical origins and displayed an integral part of the moss core community. This core community was shared among all investigated bryophytes and consisted of few but highly abundant prokaryotes, of which many appear as endophytes of Sphagnum mosses. Moreover, brown mosses and Sphagnum mosses represent habitats for archaea which were not studied in association with peatland mosses so far. Euryarchaeota that are capable of methane production (methanogens) displayed the majority of the moss-associated archaeal communities. Moss-associated methanogenesis was detected for the first time, but it was mostly negligible under laboratory conditions. Contrarily, substantial moss-associated methane oxidation was measured on both, brown mosses and Sphagnum mosses, supporting that methanotrophic bacteria as part of the moss microbiome may contribute to the reduction of methane emissions from pristine and rewetted peatlands of the northern hemisphere. Among the investigated abiotic and biotic environmental parameters, the peatland type and the host moss taxon were identified to have a major impact on the structure of moss-associated bacterial communities, contrarily to archaeal communities whose structures were similar among the investigated bryophytes. For the first time it was shown that different bog development stages harbour distinct bacterial communities, while at the same time a small core community is shared among all investigated bryophytes independent of geography and peatland type. The present thesis displays the first large-scale, systematic assessment of bacterial and archaeal communities associated both with brown mosses and Sphagnum mosses. It suggests that some host-specific moss taxa have the potential to play a key role in host moss establishment and peatland development.}, language = {en} } @phdthesis{Hammel2024, author = {Hammel, Alexander}, title = {Establishing the red microalga Porphyridium purpureum as a novel platform for the production of recombinant proteins}, doi = {10.25932/publishup-63270}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-632709}, school = {Universit{\"a}t Potsdam}, pages = {ix, 159}, year = {2024}, abstract = {Microalgae have been recognized as a promising green production platform for recombinant proteins. The majority of studies on recombinant protein expression have been conducted in the green microalga C. reinhardtii. While promising improvement regarding nuclear transgene expression in this alga has been made, it is still inefficient due to epigenetic silencing, often resulting in low yields that are not competitive with other expressor organisms. Other microalgal species might be better suited for high-level protein expression, but are limited in their availability of molecular tools. The red microalga Porphyridium purpureum recently emerged as candidate for the production of recombinant proteins. It is promising in that transformation vectors are episomally maintained as autonomously replicating plasmids in the nucleus at a high copy number, thus leading to high expression values in this red alga. In this work, we expand the genetic tools for P. purpureum and investigate parameters that govern efficient transgene expression. We provide an improved transformation protocol to streamline the generation of transgenic lines in this organism. After being able to efficiently generate transgenic lines, we showed that codon usage is a main determinant of high-level transgene expression, not only at the protein level but also at the level of mRNA accumulation. The optimized expression constructs resulted in YFP accumulation up to an unprecedented 5\% of the total soluble protein. Furthermore, we designed new constructs conferring efficient transgene expression into the culture medium, simplifying purification and harvests of recombinant proteins. To further improve transgene expression, we tested endogenous promoters driving the most highly transcribed genes in P. purpureum and found minor increase of YFP accumulation. We employed the previous findings to express complex viral antigens from the hepatitis B virus and the hepatitis C virus in P. purpureum to demonstrate its feasibility as producer of biopharmaceuticals. The viral glycoproteins were successfully produced to high levels and could reach their native confirmation, indicating a functional glycosylation machinery and an appropriate folding environment in this red alga. We could successfully upscale the biomass production of transgenic lines and with that provide enough material for immunization trials in mice that were performed in collaboration. These trials showed no toxicity of neither the biomass nor the purified antigens, and, additionally, the algal-produced antigens were able to elicit a strong and specific immune response. The results presented in this work pave the way for P. purpureum as a new promising producer organism for biopharmaceuticals in the microalgal field.}, language = {en} } @phdthesis{Cheng2024, author = {Cheng, Feng}, title = {Evolution and ontogeny of electric organ discharge in African weakly electric fish genus Campylomormyrus: a genomic and transcriptomic perspective}, doi = {10.25932/publishup-63017}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-630172}, school = {Universit{\"a}t Potsdam}, pages = {176}, year = {2024}, abstract = {The African weakly electric fishes (Mormyridae) exhibit a remarkable adaptive radiation possibly due to their species-specific electric organ discharges (EODs). It is produced by a muscle-derived electric organ that is located in the caudal peduncle. Divergence in EODs acts as a pre-zygotic isolation mechanism to drive species radiations. However, the mechanism behind the EOD diversification are only partially understood. The aim of this study is to explore the genetic basis of EOD diversification from the gene expression level across Campylomormyrus species/hybrids and ontogeny. I firstly produced a high quality genome of the species C. compressirostris as a valuable resource to understand the electric fish evolution. The next study compared the gene expression pattern between electric organs and skeletal muscles in Campylomormyrus species/hybrids with different types of EOD duration. I identified several candidate genes with an electric organ-specific expression, e.g. KCNA7a, KLF5, KCNJ2, SCN4aa, NDRG3, MEF2. The overall genes expression pattern exhibited a significant association with EOD duration in all analyzed species/hybrids. The expression of several candidate genes, e.g. KCNJ2, KLF5, KCNK6 and KCNQ5, possibly contribute to the regulation of EOD duration in Campylomormyrus due to their increasing or decreasing expression. Several potassium channel genes showed differential expression during ontogeny in species and hybrid with EOD alteration, e.g. KCNJ2. I next explored allele specific expression of intragenus hybrids by crossing the duration EOD species C. compressirostris with the medium duration EOD species C. tshokwe and the elongated duration EOD species C. rhynchophorus. The hybrids exhibited global expression dominance of the C. compressirostris allele in the adult skeletal muscle and electric organ, as well as in the juvenile electric organ. Only the gene KCNJ2 showed dominant expression of the allele from C. rhynchophorus, and this was increasingly dominant during ontogeny. It hence supported our hypothesis that KCNJ2 is a key gene of regulating EOD duration. Our results help us to understand, from a genetic perspective, how gene expression effect the EOD diversification in the African weakly electric fish.}, language = {en} } @phdthesis{Kersting2024, author = {Kersting, Katerina}, title = {Development of a CRISPR/Cas gene editing technique for the coccolithophore Chrysotila carterae}, school = {Universit{\"a}t Potsdam}, pages = {137}, year = {2024}, language = {en} } @phdthesis{Stange2024, author = {Stange, Maike}, title = {A study on Coronin-A and Aip1 function in motility of Dictyostelium discoideum and on Aip1 interchangeability between Dictyostelium discoideum and Arabidopsis thaliana}, doi = {10.25932/publishup-62856}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-628569}, school = {Universit{\"a}t Potsdam}, pages = {xiv, 168}, year = {2024}, abstract = {Actin is one of the most highly conserved proteins in eukaryotes and distinct actin-related proteins with filament-forming properties are even found in prokaryotes. Due to these commonalities, actin-modulating proteins of many species share similar structural properties and proposed functions. The polymerization and depolymerization of actin are critical processes for a cell as they can contribute to shape changes to adapt to its environment and to move and distribute nutrients and cellular components within the cell. However, to what extent functions of actin-binding proteins are conserved between distantly related species, has only been addressed in a few cases. In this work, functions of Coronin-A (CorA) and Actin-interacting protein 1 (Aip1), two proteins involved in actin dynamics, were characterized. In addition, the interchangeability and function of Aip1 were investigated in two phylogenetically distant model organisms. The flowering plant Arabidopsis thaliana (encoding two homologs, AIP1-1 and AIP1-2) and in the amoeba Dictyostelium discoideum (encoding one homolog, DdAip1) were chosen because the functions of their actin cytoskeletons may differ in many aspects. Functional analyses between species were conducted for AIP1 homologs as flowering plants do not harbor a CorA gene. In the first part of the study, the effect of four different mutation methods on the function of Coronin-A protein and the resulting phenotype in D. discoideum was revealed in two genetic knockouts, one RNAi knockdown and a sudden loss-of-function mutant created by chemical-induced dislocation (CID). The advantages and disadvantages of the different mutation methods on the motility, appearance and development of the amoebae were investigated, and the results showed that not all observed properties were affected with the same intensity. Remarkably, a new combination of Selection-Linked Integration and CID could be established. In the second and third parts of the thesis, the exchange of Aip1 between plant and amoeba was carried out. For A. thaliana, the two homologs (AIP1-1 and AIP1-2) were analyzed for functionality as well as in D. discoideum. In the Aip1-deficient amoeba, rescue with AIP1-1 was more effective than with AIP1-2. The main results in the plant showed that in the aip1-2 mutant background, reintroduced AIP1-2 displayed the most efficient rescue and A. thaliana AIP1-1 rescued better than DdAip1. The choice of the tagging site was important for the function of Aip1 as steric hindrance is a problem. The DdAip1 was less effective when tagged at the C-terminus, while the plant AIP1s showed mixed results depending on the tag position. In conclusion, the foreign proteins partially rescued phenotypes of mutant plants and mutant amoebae, despite the organisms only being very distantly related in evolutionary terms.}, language = {en} } @phdthesis{You2024, author = {You, Lili}, title = {Chloroplast engineering for recombinant protein production and stress protection}, school = {Universit{\"a}t Potsdam}, pages = {133}, year = {2024}, language = {en} } @phdthesis{Szekely2024, author = {Sz{\´e}kely, Andr{\´a}s Csaba}, title = {Long-distance circadian coordination via a phloem-delivered mobile transcript}, school = {Universit{\"a}t Potsdam}, pages = {105}, year = {2024}, language = {en} } @phdthesis{Wojciechowska2022, author = {Wojciechowska, Izabela}, title = {The journey towards the discovery of new protein-metabolite interactions in Arabidopsis thaliana and further functional characterization of selected binding events}, school = {Universit{\"a}t Potsdam}, pages = {150}, year = {2022}, language = {en} } @phdthesis{Kappel2023, author = {Kappel, Sandrine}, title = {Photosynthesis in fluctuating light}, school = {Universit{\"a}t Potsdam}, pages = {172}, year = {2023}, abstract = {Light is the essential energy source for plants to drive photosynthesis. In nature, light availability is highly variable and often fluctuates on very short time scales. As a result, plants developed mechanisms to cope with these fluctuations. Understanding how to improve light use efficiency in natural fluctuating light (FL) conditions is a major target for agronomy. In the first project, we identified an Arabidopsis thaliana plant that showed reduced levels of rapidly inducible non-photochemical quenching (NPQ). This plant was devoid of any T-DNA insertion. Using a mapping-by-sequencing approach, we successfully located the causal genomic region near the end of chromosome 4. Through variant investigations in that region, we identified a deletion of about 20 kb encompassing 9 genes. By complementation analysis, we confirmed that one of the deleted genes, VTC2, is the causal gene responsible for the low NPQ. Loss of VTC2 decreased NPQ particularly in old leaves, with young leaves being only slightly affected. Additionally, ascorbate levels were almost abolished in old leaves, likely causing the NPQ decrease by reducing the activity of the xanthophyll cycle. Although ascorbate levels in younger leaves were reduced compared to wild-type plants, they remained at a comparably higher level. This difference may be due to the VTC2 paralog VTC5, which is expressed at a higher level in young leaves than in old ones. Plants require the PROTON GRADIENT REGULATION 5 (PGR5) protein for survival in FL. pgr5 mutants die because they fail to increase the luminal proton concentration in response to high light (HL) phases. A rapid elevation in ∆pH is needed to slow down electron transport through the Cytochrome b6 f complex (photosynthetic control). In FL, such lack of control in the pgr5 mutants results in photosystem I (PSI) overreduction, reactive oxygen species (ROS) production, and cell death. Decreases in photosystem II (PSII) activity introduced by crossing pgr5 with PSII deficient mutants rescued the lethality of pgr5 in FL. PGR5 was suggested to act as part of the ferredoxin-plastoquinone reductase (FQR), involved in cyclic electron transfer around PSI. However, the proposed molecular role of PGR5 remains highly debated. To learn more about PGR5 function, we performed a forward genetic screen in Arabidopsis thaliana to identify EMS-induced suppressor mutants surviving longer when grown in FL compared to pgr5 mutants (referred to as "suppressor of pgr5 lethality in fluctuating light", splf ). 11 different candidate genes were identified in a total of 22 splf plants. Mutants of seven of these genes in the pgr5 background showed low Fv/Fm values when grown in non-fluctuating low light (LL). Five of these 4genes were previously reported to have a role in PSII biogenesis or function. Two others, RPH1 and a DEAD/DEAH box helicase (AT3G02060), have not been linked to PSII function before. Three of splf candidate genes link to primary metabolism, fructose-2,6-bisphosphatase (F2KP ), udp-glucose pyrophosphorylase 1 (UGP1 ) and ferredoxin-dependent glutamate synthase (Fd-GOGAT ). They are characterized by the fact that they survive longer in FL than pgr5 mutants but do not procede beyond the early vegetative phase and then die.}, language = {en} } @phdthesis{Bulut2023, author = {Bulut, Mustafa}, title = {Assessing the genetic architecture underlying systemic responses to variable environments in crops using multi-omics}, school = {Universit{\"a}t Potsdam}, pages = {180, IV}, year = {2023}, abstract = {Plant metabolism serves as the primary mechanism for converting assimilated carbon into essential compounds crucial for plant growth and ultimately, crop yield. This renders it a focal point of research with significant implications. Despite notable strides in comprehending the genetic principles underpinning metabolism and yield, there remains a dearth of knowledge regarding the genetic factors responsible for trait variation under varying environmental conditions. Given the burgeoning global population and the advancing challenges posed by climate change, unraveling the intricacies of metabolic and yield responses to water scarcity became increasingly important in safeguarding food security. Our research group has recently started to work on the genetic resources of legume species. To this end, the study presented here investigates the metabolic diversity across five different legume species at a tissue level, identifying species-specific biosynthesis of alkaloids as well as iso-/flavonoids with diverse functional groups, namely prenylation, phenylacylation as well as methoxylation, to create a resource for follow up studies investigation the metabolic diversity in natural diverse populations of legume species. Following this, the second study investigates the genetic architecture of drought-induced changes in a global common bean population. Here, a plethora of quantitative trait loci (QTL) associated with various traits are identified by performing genome-wide association studies (GWAS), including for lipid signaling. On this site, overexpression of candidates highlighted the induction of several oxylipins reported to be pivotal in coping with harsh environmental conditions such as water scarcity. Diverging from the common bean and GWAS, the following study focuses on identifying drought-related QTL in tomato using a bi-parental breeding population. This descriptive study highlights novel multi-omic QTL, including metabolism, photosynthesis as well as fruit setting, some of which are uniquely assigned under drought. Compared to conventional approaches using the bi-parental IL population, the study presented improves the resolution by assessing further backcrossed ILs, named sub-ILs. In the final study, a photosynthetic gene, namely a PetM subunit of the cytochrome b6f complex encoding gene, involved in electron flow is characterized in an horticultural important crop. While several advances have been made in model organisms, this study highlights the transition of this fundamental knowledge to horticultural important crops, such as tomato, and investigates its function under differing light conditions. Overall, the presented thesis combines different strategies in unveiling the genetic components in multi-omic traits under drought using conventional breeding populations as well as a diverse global population. To this end, it allows a comparison of either approach and highlights their strengths and weaknesses.}, language = {en} }