@unpublished{Anders2009, author = {Anders, Martin}, title = {Martingale, Amarts und das starke Gesetz der Grossen Zahlen}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-49494}, year = {2009}, abstract = {Aus dem Inhalt: Einleitung Kapitel 1. Starke Gesetze der Grossen Zahlen 1. SGGZ unter Wachstumsbedingungen an die p-ten Momente 2. SGGZ f{\"u}r identisch verteilte Zufallsvariablen 3. SGGZ f{\"u}r Prozesse mit *-mixing-Eigenschaft Kapitel 2. Einf{\"u}hrung zu diskreten (Sub-,Super-)Martingalen 1. Vorhersagbarkeit 2. gestoppte (Sub-,Super-)Martingale 3. Upcrossings 4. Konvergenzs{\"a}tze 5. Doob-Zerlegung 6. Eine {\"a}quivalente Definition eines (Sub-)Martingals Kapitel 3. Martingale und gleichgradige Integrierbarkeit 1. Gleichm{\"a}ßige(-f¨ormige,-gradige) Integrierbarkeit 2. gleichgradig integrierbare Martingale Kapitel 4. Martingale und das SGGZ Kapitel 5."reversed" (Sub-,Super-)Martingale 1. Konvergenzs{\"a}tze Kapitel 6. (Sub-,Super-)Martingale mit gerichteter Indexmenge 1. {\"A}quivalente Formulierung eines (Sub-)Martingals 2. Konvergenzs{\"a}tze Kapitel 7. Quasimartingale,Amarts und Semiamarts 1. Konvergenzs{\"a}tze 2. Riesz-Zerlegung 3. Doob-Zerlegung Kapitel 8. Amarts und das SGGZ Kapitel 9."reversed" Amarts und Semiamarts 1. Konvergenzs{\"a}tze 2."Aufw{\"a}rts"- gegen "Abw{\"a}rts"-Adaptiertheit 3. Riesz-Zerlegung 4. Stabilit{\"a}tsanalyse Kapitel 10. Amarts mit gerichteter Indexmenge 1. Konvergenzs{\"a}tze 2. Riesz-Zerlegung Anhang A. zur Existenz einer Folge unabh{\"a}ngiger Zufallsvariablen B. Konvergenz}, language = {de} } @phdthesis{Bartels1999, author = {Bartels, Knut}, title = {Tests zur Modellspezifikation in der nichtlinearen Regression}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0000171}, school = {Universit{\"a}t Potsdam}, year = {1999}, abstract = {Als Grundlage vieler statistischer Verfahren wird der Prozess der Entstehung von Daten modelliert, um dann weitere Sch{\"a}tz- und Testverfahren anzuwenden. Diese Arbeit befasst sich mit der Frage, wie diese Spezifikation f{\"u}r parametrische Modelle selbst getestet werden kann. In Erweiterung bestehender Verfahren werden Tests mit festem Kern eingef{\"u}hrt und ihre asymptotischen Eigenschaften werden analysiert. Es wird gezeigt, dass die Bestimmung der kritischen Werte mit mehreren Stichprobenwiederholungsverfahren m{\"o}glich ist. Von diesen ist eine neue Monte-Carlo-Approximation besonders wichtig, da sie die Komplexit{\"a}t der Berechnung deutlich verringern kann. Ein bedingter Kleinste-Quadrate-Sch{\"a}tzer f{\"u}r nichtlineare parametrische Modelle wird definiert und seine wesentlichen asymptotischen Eigenschaften werden hergeleitet. S{\"a}mtliche Versionen der Tests und alle neuen Konzepte wurden in Simulationsstudien untersucht, deren wichtigste Resultate pr{\"a}sentiert werden. Die praktische Anwendbarkeit der Testverfahren wird an einem Datensatz zur Produktwahl dargelegt, der mit multinomialen Logit-Modellen analysiert werden soll.}, language = {de} } @article{Buttig2020, author = {Buttig, Steve}, title = {Europa Universalis IV}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-489-0}, doi = {10.25932/publishup-48569}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-485695}, pages = {159 -- 174}, year = {2020}, language = {de} } @misc{Dahl2023, type = {Master Thesis}, author = {Dahl, Dorothee Sophie}, title = {Zahlen in den Fingern}, doi = {10.25932/publishup-60762}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-607629}, school = {Universit{\"a}t Potsdam}, pages = {118}, year = {2023}, abstract = {Die Debatte {\"u}ber den Einsatz von digitalen Werkzeugen in der mathematischen Fr{\"u}hf{\"o}rderung ist hoch aktuell. Lernspiele werden konstruiert, mit dem Ziel, mathematisches, informelles Wissen aufzubauen und so einen besseren Schulstart zu erm{\"o}glichen. Doch allein die digitale und spielerische Aufarbeitung f{\"u}hrt nicht zwingend zu einem Lernerfolg. Daher ist es umso wichtiger, die konkrete Implementation der theoretischen Konstrukte und Interaktionsm{\"o}glichkeiten mit den Werkzeugen zu analysieren und passend aufzubereiten. In dieser Masterarbeit wird dazu exemplarisch ein mathematisches Lernspiel namens „Fingu" f{\"u}r den Einsatz im vorschulischen Bereich theoretisch und empirisch im Rahmen der Artifact-Centric Activity Theory (ACAT) untersucht. Dazu werden zun{\"a}chst die theoretischen Hintergr{\"u}nde zum Zahlensinn, Zahlbegriffserwerb, Teil-Ganze-Verst{\"a}ndnis, der Anzahlwahrnehmung und -bestimmung, den Anzahlvergleichen und der Anzahldarstellung mithilfe von Fingern gem{\"a}ß der Embodied Cognition sowie der Verwendung von digitalen Werkzeugen und Multi-Touch-Ger{\"a}ten umfassend beschrieben. Anschließend wird die App Fingu erkl{\"a}rt und dann theoretisch entlang des ACAT-Review-Guides analysiert. Zuletzt wird die selbstst{\"a}ndig durchgef{\"u}hrte Studie mit zehn Vorschulkindern erl{\"a}utert und darauf aufbauend Verbesserungs- und Entwicklungsm{\"o}glichkeiten der App auf wissenschaftlicher Grundlage beigetragen. F{\"u}r Fingu l{\"a}sst sich abschließend festhalten, dass viele Prozesse wie die (Quasi-)Simultanerfassung oder das Z{\"a}hlen gef{\"o}rdert werden k{\"o}nnen, f{\"u}r andere wie das Teil-Ganze-Verst{\"a}ndnis aber noch Anpassungen und/oder die Begleitung durch Erwachsene n{\"o}tig ist.}, language = {de} } @masterthesis{Dahl2021, type = {Bachelor Thesis}, author = {Dahl, Dorothee Sophie}, title = {Let's have FUN! Gamification im Mathematikunterricht}, doi = {10.25932/publishup-51593}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-515937}, school = {Universit{\"a}t Potsdam}, pages = {78}, year = {2021}, abstract = {Spiele und spieltypische Elemente wie das Sammeln von Treuepunkten sind aus dem Alltag kaum wegzudenken. Zudem werden sie zunehmend in Unternehmen oder in Lernumgebungen eingesetzt. Allerdings ist die Methode Gamification bisher f{\"u}r den p{\"a}dagogischen Kontext wenig klassifiziert und f{\"u}r Lehrende kaum zug{\"a}nglich gemacht worden. Daher zielt diese Bachelorarbeit darauf ab, eine systematische Strukturierung und Aufarbeitung von Gamification sowie innovative Ans{\"a}tze f{\"u}r die Verwendung spieltypischer Elemente im Unterricht, konkret dem Mathematikunterricht, zu pr{\"a}sentieren. Dies kann eine Grundlage f{\"u}r andere Fachgebiete, aber auch andere Lehrformen bieten und so die Umsetzbarkeit von Gamification in eigenen Lehrveranstaltungen aufzeigen. In der Arbeit wird begr{\"u}ndet, weshalb und mithilfe welcher Elemente Gamification die Motivation und Leistungsbereitschaft der Lernenden langfristig erh{\"o}hen, die Sozial- und Personalkompetenzen f{\"o}rdern sowie die Lernenden zu mehr Aktivit{\"a}t anregen kann. Zudem wird Gamification explizit mit grundlegenden mathematikdidaktischen Prinzipien in Verbindung gesetzt und somit die Relevanz f{\"u}r den Mathematikunterricht hervorgehoben. Anschließend werden die einzelnen Elemente von Gamification wie Punkte, Level, Abzeichen, Charaktere und Rahmengeschichte entlang einer eigens f{\"u}r den p{\"a}dagogischen Kontext entwickelten Klassifikation „FUN" (Feedback - User specific elements - Neutral elements) schematisch beschrieben, ihre Funktionen und Wirkung dargestellt sowie Einsatzm{\"o}glichkeiten im Unterricht aufgezeigt. Dies beinhaltet Ideen zu lernf{\"o}rderlichem Feedback, Differenzierungsm{\"o}glichkeiten und Unterrichtsrahmengestaltung, die in Lehrveranstaltungen aller Art umsetzbar sein k{\"o}nnen. Die Bachelorarbeit umfasst zudem ein spezifisches Beispiel, einen Unterrichtsentwurf einer gamifizierten Mathematikstunde inklusive des zugeh{\"o}rigen Arbeitsmaterials, anhand dessen die Verwendung von Gamification deutlich wird. Gamification offeriert oftmals Vorteile gegen{\"u}ber dem traditionellen Unterricht, muss jedoch wie jede Methode an den Inhalt und die Zielgruppe angepasst werden. Weiterf{\"u}hrende Forschung k{\"o}nnte sich mit konkreten motivationalen Strukturen, personenspezifischen Unterschieden sowie mit mathematischen Inhalten wie dem Probleml{\"o}sen oder dem Wechsel zwischen verschiedenen Darstellungen hinsichtlich gamifizierter Lehrformen besch{\"a}ftigen.}, language = {de} } @misc{EhlenFloegeGoebeletal.2023, author = {Ehlen, Tobias and Fl{\"o}ge, Annie and G{\"o}bel, Franziska and Keller, Peter and Rœlly, Sylvie}, title = {{\"U}bungsbuch zur Stochastik}, editor = {Keller, Peter and Rœlly, Sylvie}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-563-7}, doi = {10.25932/publishup-59593}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-595939}, pages = {306}, year = {2023}, abstract = {Dieses Buch stellt {\"U}bungen zu den Grundbegriffen und Grunds{\"a}tzen der Stochastik und ihre L{\"o}sungen zur Verf{\"u}gung. So wie man Tonleitern in der Musik trainiert, so berechnet man {\"U}bungsaufgaben in der Mathematik. In diesem Sinne soll dieses {\"U}bungsbuch vor allem als Vorlage dienen f{\"u}r das eigenst{\"a}ndige, eigenverantwortliche Lernen und {\"U}ben. Die Sch{\"o}nheit und Einzigartigkeit der Wahrscheinlichkeitstheorie besteht darin, dass sie eine Vielzahl von realen Ph{\"a}nomenen modellieren kann. Daher findet man hier Aufgaben mit Verbindungen zur Geometrie, zu Gl{\"u}cksspielen, zur Versicherungsmathematik, zur Demographie und vielen anderen Themen.}, language = {de} } @masterthesis{Engelhardt2021, type = {Bachelor Thesis}, author = {Engelhardt, Max Angel Ronan}, title = {Zwischen Simulation und Beweis - eine mathematische Analyse des Bienaym{\´e}-Galton-Watson-Prozesses und sein Einsatz innerhalb des Mathematikunterrichts}, doi = {10.25932/publishup-52447}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-524474}, school = {Universit{\"a}t Potsdam}, pages = {117}, year = {2021}, abstract = {Die Bienaym{\´e}-Galton-Watson Prozesse k{\"o}nnen f{\"u}r die Untersuchung von speziellen und sich entwickelnden Populationen verwendet werden. Die Populationen umfassen Individuen, welche sich identisch, zuf{\"a}llig, selbstst{\"a}ndig und unabh{\"a}ngig voneinander fortpflanzen und die jeweils nur eine Generation existieren. Die n-te Generation ergibt sich als zuf{\"a}llige Summe der Individuen der (n-1)-ten Generation. Die Relevanz dieser Prozesse begr{\"u}ndet sich innerhalb der Historie und der inner- und außermathematischen Bedeutung. Die Geschichte der Bienaym{\´e}-Galton-Watson-Prozesse wird anhand der Entwicklung des Konzeptes bis heute dargestellt. Dabei werden die Wissenschaftler:innen verschiedener Disziplinen angef{\"u}hrt, die Erkenntnisse zu dem Themengebiet beigetragen und das Konzept in ihren Fachbereichen angef{\"u}hrt haben. Somit ergibt sich die außermathematische Signifikanz. Des Weiteren erh{\"a}lt man die innermathematische Bedeutsamkeit mittels des Konzeptes der Verzweigungsprozesse, welches auf die Bienaym{\´e}-Galton-Watson Prozesse zur{\"u}ckzuf{\"u}hren ist. Die Verzweigungsprozesse stellen eines der aussagekr{\"a}ftigsten Modelle f{\"u}r die Beschreibung des Populationswachstums dar. Dar{\"u}ber hinaus besteht die derzeitige Wichtigkeit durch die Anwendungsm{\"o}glichkeit der Verzweigungsprozesse und der Bienaym{\´e}-Galton-Watson Prozesse innerhalb der Epidemiologie. Es werden die Ebola- und die Corona-Pandemie als Anwendungsfelder angef{\"u}hrt. Die Prozesse dienen als Entscheidungsst{\"u}tze f{\"u}r die Politik und erm{\"o}glichen Aussagen {\"u}ber die Auswirkungen von Maßnahmen bez{\"u}glich der Pandemien. Neben den Prozessen werden ebenfalls der bedingte Erwartungswert bez{\"u}glich diskreter Zufallsvariablen, die wahrscheinlichkeitserzeugende Funktion und die zuf{\"a}llige Summe eingef{\"u}hrt. Die Konzepte vereinfachen die Beschreibung der Prozesse und bilden somit die Grundlage der Betrachtungen. Außerdem werden die ben{\"o}tigten und weiterf{\"u}hrenden Eigenschaften der grundlegenden Themengebiete und der Prozesse aufgef{\"u}hrt und bewiesen. Das Kapitel erreicht seinen H{\"o}hepunkt bei dem Beweis des Kritikalit{\"a}tstheorems, wodurch eine Aussage {\"u}ber das Aussterben des Prozesses in verschiedenen F{\"a}llen und somit {\"u}ber die Aussterbewahrscheinlichkeit get{\"a}tigt werden kann. Die F{\"a}lle werden anhand der zu erwartenden Anzahl an Nachkommen eines Individuums unterschieden. Es zeigt sich, dass ein Prozess bei einer zu erwartenden Anzahl kleiner gleich Eins mit Sicherheit ausstirbt und bei einer Anzahl gr{\"o}ßer als Eins, die Population nicht in jedem Fall aussterben muss. Danach werden einzelne Beispiele, wie der linear fractional case, die Population von Fibroblasten (Bindegewebszellen) von M{\"a}usen und die Entstehungsfragestellung der Prozesse, angef{\"u}hrt. Diese werden mithilfe der erlangten Ergebnisse untersucht und einige ausgew{\"a}hlte zuf{\"a}llige Dynamiken werden im nachfolgenden Kapitel simuliert. Die Simulationen erfolgen durch ein in Python erstelltes Programm und werden mithilfe der Inversionsmethode realisiert. Die Simulationen stellen beispielhaft die Entwicklungen in den verschiedenen Kritikalit{\"a}tsf{\"a}llen der Prozesse dar. Zudem werden die H{\"a}ufigkeiten der einzelnen Populationsgr{\"o}ßen in Form von Histogrammen angebracht. Dabei l{\"a}sst sich der Unterschied zwischen den einzelnen F{\"a}llen best{\"a}tigen und es wird die Anwendungsm{\"o}glichkeit der Bienaym{\´e}-Galton-Watson Prozesse bei komplexeren Problemen deutlich. Histogramme bekr{\"a}ftigen, dass die einzelnen Populationsgr{\"o}ßen nur endlich oft vorkommen. Diese Aussage wurde von Galton aufgeworfen und in der Extinktions-Explosions-Dichotomie verwendet. Die dargestellten Erkenntnisse {\"u}ber das Themengebiet und die Betrachtung des Konzeptes werden mit einer didaktischen Analyse abgeschlossen. Die Untersuchung beinhaltet die Ber{\"u}cksichtigung der Fundamentalen Ideen, der Fundamentalen Ideen der Stochastik und der Leitidee „Daten und Zufall". Dabei ergibt sich, dass in Abh{\"a}ngigkeit der gew{\"a}hlten Perspektive die Anwendung der Bienaym{\´e}-Galton-Watson Prozesse innerhalb der Schule plausibel ist und von Vorteil f{\"u}r die Sch{\"u}ler:innen sein kann. F{\"u}r die Behandlung wird exemplarisch der Rahmenlehrplan f{\"u}r Berlin und Brandenburg analysiert und mit dem Kernlehrplan Nordrhein-Westfalens verglichen. Die Konzeption des Lehrplans aus Berlin und Brandenburg l{\"a}sst nicht den Schluss zu, dass die Bienaym{\´e}-Galton-Watson Prozesse angewendet werden sollten. Es l{\"a}sst sich feststellen, dass die zugrunde liegende Leitidee nicht vollumf{\"a}nglich mit manchen Fundamentalen Ideen der Stochastik vereinbar ist. Somit w{\"u}rde eine Modifikation hinsichtlich einer st{\"a}rkeren Orientierung des Lehrplans an den Fundamentalen Ideen die Anwendung der Prozesse erm{\"o}glichen. Die Aussage wird durch die Betrachtung und {\"U}bertragung eines nordrhein-westf{\"a}lischen Unterrichtsentwurfes f{\"u}r stochastische Prozesse auf die Bienaym{\´e}-Galton-Watson Prozesse unterst{\"u}tzt. Dar{\"u}ber hinaus werden eine Concept Map und ein Vernetzungspentagraph nach von der Bank konzipiert um diesen Aspekt hervorzuheben.}, language = {de} } @phdthesis{Etzold2021, author = {Etzold, Heiko}, title = {Neue Zug{\"a}nge zum Winkelbegriff}, doi = {10.25932/publishup-50418}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-504187}, school = {Universit{\"a}t Potsdam}, pages = {300}, year = {2021}, abstract = {Die Vielf{\"a}ltigkeit des Winkelbegriffs ist gleichermaßen spannend wie herausfordernd in Hinblick auf seine Zug{\"a}nge im Mathematikunterricht der Schule. Ausgehend von verschiedenen Vorstellungen zum Winkelbegriff wird in dieser Arbeit ein Lehrgang zur Vermittlung des Winkelbegriffs entwickelt und letztlich in konkrete Umsetzungen f{\"u}r den Schulunterricht {\"u}berf{\"u}hrt. Dabei erfolgt zun{\"a}chst eine stoffdidaktische Auseinandersetzung mit dem Winkelbegriff, die von einer informationstheoretischen Winkeldefinition begleitet wird. In dieser wird eine Definition f{\"u}r den Winkelbegriff unter der Fragestellung entwickelt, welche Informationen man {\"u}ber einen Winkel ben{\"o}tigt, um ihn beschreiben zu k{\"o}nnen. So k{\"o}nnen die in der fachdidaktischen Literatur auftretenden Winkelvorstellungen aus fachmathematischer Perspektive erneut abgeleitet und validiert werden. Parallel dazu wird ein Verfahren beschrieben, wie Winkel - auch unter dynamischen Aspekten - informationstechnisch verarbeitet werden k{\"o}nnen, so dass Schlussfolgerungen aus der informationstheoretischen Winkeldefinition beispielsweise in dynamischen Geometriesystemen zur Verf{\"u}gung stehen. Unter dem Gesichtspunkt, wie eine Abstraktion des Winkelbegriffs im Mathematikunterricht vonstatten gehen kann, werden die Grundvorstellungsidee sowie die Lehrstrategie des Aufsteigens vom Abstrakten zum Konkreten miteinander in Beziehung gesetzt. Aus der Verkn{\"u}pfung der beiden Theorien wird ein grunds{\"a}tzlicher Weg abgeleitet, wie im Rahmen der Lehrstrategie eine Ausgangsabstraktion zu einzelnen Winkelaspekten aufgebaut werden kann, was die Generierung von Grundvorstellungen zu den Bestandteilen des jeweiligen Winkelaspekts und zum Operieren mit diesen Begriffsbestandteilen erm{\"o}glichen soll. Hierf{\"u}r wird die Lehrstrategie angepasst, um insbesondere den {\"U}bergang von Winkelsituationen zu Winkelkontexten zu realisieren. Explizit f{\"u}r den Aspekt des Winkelfeldes werden, anhand der Untersuchung der Sichtfelder von Tieren, Lernhandlungen und Forderungen an ein Lernmodell beschrieben, die Sch{\"u}lerinnen und Sch{\"u}ler bei der Begriffsaneignung unterst{\"u}tzen. Die T{\"a}tigkeitstheorie, der die genannte Lehrstrategie zuzuordnen ist, zieht sich als roter Faden durch die weitere Arbeit, wenn nun theoriebasiert Designprinzipien generiert werden, die in die Entwicklung einer interaktiven Lernumgebung m{\"u}nden. Hierzu wird u. a. das Modell der Artifact-Centric Activity Theory genutzt, das das Beziehungsgef{\"u}ge aus Sch{\"u}lerinnen und Sch{\"u}lern, dem mathematischen Gegenstand und einer zu entwickelnden App als vermittelndes Medium beschreibt, wobei der Einsatz der App im Unterrichtskontext sowie deren regelgeleitete Entwicklung Bestandteil des Modells sind. Gem{\"a}ß dem Ansatz der Fachdidaktischen Entwicklungsforschung wird die Lernumgebung anschließend in mehreren Zyklen erprobt, evaluiert und {\"u}berarbeitet. Dabei wird ein qualitatives Setting angewandt, das sich der Semiotischen Vermittlung bedient und untersucht, inwiefern sich die Qualit{\"a}t der von den Sch{\"u}lerinnen und Sch{\"u}lern gezeigten Lernhandlungen durch die Designprinzipien und deren Umsetzung erkl{\"a}ren l{\"a}sst. Am Ende der Arbeit stehen eine finale Version der Designprinzipien und eine sich daraus ergebende Lernumgebung zur Einf{\"u}hrung des Winkelfeldbegriffs in der vierten Klassenstufe.}, language = {de} } @misc{Fabian2020, type = {Master Thesis}, author = {Fabian, Melina}, title = {Grundvorstellungen bei Zahlbereichserweiterungen}, doi = {10.25932/publishup-56593}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-565930}, school = {Universit{\"a}t Potsdam}, pages = {95}, year = {2020}, abstract = {Die Erweiterung des nat{\"u}rlichen Zahlbereichs um die positiven Bruchzahlen und die negativen ganzen Zahlen geht f{\"u}r Sch{\"u}lerinnen und Sch{\"u}ler mit großen gedanklichen H{\"u}rden und einem Umbruch bis dahin aufgebauter Grundvorstellungen einher. Diese Masterarbeit tr{\"a}gt wesentliche Ver{\"a}nderungen auf der Vorstellungs- und Darstellungsebene f{\"u}r beide Zahlbereiche zusammen und setzt sich mit den kognitiven Herausforderungen f{\"u}r Lernende auseinander. Auf der Grundlage einer Diskussion traditioneller sowie alternativer Lehrg{\"a}nge der Zahlbereichserweiterung wird eine Unterrichtskonzeption f{\"u}r den Mathematikunterricht entwickelt, die eine parallele Einf{\"u}hrung der Bruchzahlen und der negativen Zahlen vorschl{\"a}gt. Die Empfehlungen der Unterrichtkonzeption erstrecken sich {\"u}ber den Zeitraum von der ersten bis zur siebten Klassenstufe, was der behutsamen Weiterentwicklung und Modifikation des Zahlbegriffs viel Zeit einr{\"a}umt, und enthalten auch didaktische {\"U}berlegungen sowie konkrete Hinweise zu m{\"o}glichen Aufgabenformaten.}, language = {de} } @article{FredeKnobelsdorf2018, author = {Frede, Christiane and Knobelsdorf, Maria}, title = {Explorative Datenanalyse der Studierendenperformance in der Theoretischen Informatik}, series = {Commentarii informaticae didacticae}, journal = {Commentarii informaticae didacticae}, number = {10}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-416378}, pages = {135 -- 149}, year = {2018}, abstract = {In diesem Artikel werden die Ergebnisse einer explorativen Datenanalyse {\"u}ber die Studierendenperformance in Klausur- und Hausaufgaben eines Einf{\"u}hrungskurses der Theoretischen Informatik vorgestellt. Da bisher empirisch wenig untersucht ist, welche Probleme Studierenden in den Einf{\"u}hrungskursen haben und die Durchfallquoten in diesen Kursen sehr hoch sind, soll auf diesem Weg ein {\"U}berblick gegeben werden. Die Ergebnisse zeigen, dass alle Studierenden unabh{\"a}ngig von ihrer Klausurnote die niedrigste Performance in den Klausur- und Hausaufgaben aufweisen, in denen formale Beweise gefordert sind. Dieses Ergebnis st{\"a}rkt die Vermutung, dass didaktische Ans{\"a}tze und Maßnahmen sich insbesondere auf das Erlernen formaler Beweismethoden fokussieren sollten, um Informatik-Studierende nachhaltiger dabei zu unterst{\"u}tzen, in Theoretischer Informatik erfolgreich zu sein.}, language = {de} }