@phdthesis{Vacogne2016, author = {Vacogne, Charlotte D.}, title = {New synthetic routes towards well-defined polypeptides, morphologies and hydrogels}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-396366}, school = {Universit{\"a}t Potsdam}, pages = {xii, 175}, year = {2016}, abstract = {Proteins are natural polypeptides produced by cells; they can be found in both animals and plants, and possess a variety of functions. One of these functions is to provide structural support to the surrounding cells and tissues. For example, collagen (which is found in skin, cartilage, tendons and bones) and keratin (which is found in hair and nails) are structural proteins. When a tissue is damaged, however, the supporting matrix formed by structural proteins cannot always spontaneously regenerate. Tailor-made synthetic polypeptides can be used to help heal and restore tissue formation. Synthetic polypeptides are typically synthesized by the so-called ring opening polymerization (ROP) of α-amino acid N-carboxyanhydrides (NCA). Such synthetic polypeptides are generally non-sequence-controlled and thus less complex than proteins. As such, synthetic polypeptides are rarely as efficient as proteins in their ability to self-assemble and form hierarchical or structural supramolecular assemblies in water, and thus, often require rational designing. In this doctoral work, two types of amino acids, γ-benzyl-L/D-glutamate (BLG / BDG) and allylglycine (AG), were selected to synthesize a series of (co)polypeptides of different compositions and molar masses. A new and versatile synthetic route to prepare polypeptides was developed, and its mechanism and kinetics were investigated. The polypeptide properties were thoroughly studied and new materials were developed from them. In particular, these polypeptides were able to aggregate (or self-assemble) in solution into microscopic fibres, very similar to those formed by collagen. By doing so, they formed robust physical networks and organogels which could be processed into high water-content, pH-responsive hydrogels. Particles with highly regular and chiral spiral morphologies were also obtained by emulsifying these polypeptides. Such polypeptides and the materials derived from them are, therefore, promising candidates for biomedical applications.}, language = {en} } @phdthesis{Kasparova2002, author = {Kasparova, Pavla}, title = {Doppelthydrophile Blockcopolymere als Mineralisationstemplate}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0000483}, school = {Universit{\"a}t Potsdam}, year = {2002}, abstract = {Die vorliegende Arbeit besch{\"a}ftigt sich mit der Synthese und den Eigenschaften von doppelthydrophilen Blockcopolymeren und ihrer Anwendung in einem biomimetischen Mineralisationsprozeß von Calciumcarbonat und Bariumsulfat. Doppelthydrophile Blockcopolymere bestehen aus einem hydrophilen Block, der nicht mit Mineralien wechselwirkt und einem zweiten Polyelektrolyt-Block, der stark mit Mineraloberfl{\"a}chen wechselwirkt. Diese Blockcopolymere wurden durch ring{\"o}ffnende Polymerisation von N-carboxyanhydriden (NCA′s) und a-methoxy-ω-amino[poly(ethylene glycol)] PEG-NH2 als Initiator hergestellt. Die hergestellten Blockcopolymere wurden als effektive Wachstumsmodifikatoren f{\"u}r die Kristallisation von Calciumcarbonat und Bariumsulfat Mineralien eingesetzt. Die so erhaltenen Mineralpartikel (Kugeln, Hantel, eif{\"o}rmige Partikel) wurden durch Lichtmikroskopie in L{\"o}sung, SEM und TEM charakterisiert. R{\"o}ntgenweitwinkelstreuung (WAXS) wurde verwendet, um die Modifikation von Calciumcarbonat zu ermitteln und die Gr{\"o}ße der Calciumcarbonat- und Bariumsulfat-Nanopartikel zu ermitteln.}, subject = {Blockcopolymere ; Polyaminos{\"a}uren ; Hydrophile Verbindungen ; Chemische Synthese ; Ring{\"o}ffnungspolymerisation | Calciumcarbonat ; Biomineralisation}, language = {de} }