@misc{KrupkovaSadowskaKamedaetal.2018, author = {Krupkova, Olga and Sadowska, Aleksandra and Kameda, Takuya and Hitzl, Wolfgang and Hausmann, Oliver Nic and Klasen, J{\"u}rgen and Wuertz-Kozak, Karin}, title = {p38 MaPK facilitates crosstalk between endoplasmic reticulum stress and IL-6 release in the intervertebral Disc}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {705}, issn = {1866-8364}, doi = {10.25932/publishup-46869}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-468698}, pages = {16}, year = {2018}, abstract = {Degenerative disc disease is associated with increased expression of pro-inflammatory cytokines in the intervertebral disc (IVD). However, it is not completely clear how inflammation arises in the IVD and which cellular compartments are involved in this process. Recently, the endoplasmic reticulum (ER) has emerged as a possible modulator of inflammation in age-related disorders. In addition, ER stress has been associated with the microenvironment of degenerated IVDs. Therefore, the aim of this study was to analyze the effects of ER stress on inflammatory responses in degenerated human IVDs and associated molecular mechanisms. Gene expression of ER stress marker GRP78 and pro-inflammatory cytokines IL-6, IL-8, IL-1 beta, and TNF-alpha was analyzed in human surgical IVD samples (n = 51, Pfirrmann grade 2-5). The expression of GRP78 positively correlated with the degeneration grade in lumbar IVDs and IL-6, but not with IL-1 beta and TNF-alpha. Another set of human surgical IVD samples (n = 25) was used to prepare primary cell cultures. ER stress inducer thapsigargin (Tg, 100 and 500 nM) activated gene and protein expression of IL-6 and induced phosphorylation of p38 MAPK. Both inhibition of p38 MAPK by SB203580 (10 mu M) and knockdown of ER stress effector CCAAT-enhancer-binding protein homologous protein (CHOP) reduced gene and protein expression of IL-6 in Tg-treated cells. Furthermore, the effects of an inflammatory microenvironment on ER stress were tested. TNF-alpha (5 and 10 ng/mL) did not activate ER stress, while IL-1 beta (5 and 10 ng/mL) activated gene and protein expression of GRP78, but did not influence [Ca2+](i) flux and expression of CHOP, indicating that pro-inflammatory cytokines alone may not induce ER stress in vivo. This study showed that IL-6 release in the IVD can be initiated following ER stress and that ER stress mediates IL-6 release through p38 MAPK and CHOP. Therapeutic targeting of ER stress response may reduce the consequences of the harsh microenvironment in degenerated IVD.}, language = {en} } @misc{SadowskaHausmannWuertzKozak2018, author = {Sadowska, Aleksandra and Hausmann, Oliver Nic and Wuertz-Kozak, Karin}, title = {Inflammaging in the intervertebral disc}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {519}, doi = {10.25932/publishup-41408}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-414081}, pages = {9}, year = {2018}, abstract = {Degeneration of the intervertebral disc - triggered by ageing, mechanical stress, traumatic injury, infection, inflammation and other factors - has a significant role in the development of low back pain. Back pain not only has a high prevalence, but also a major socio-economic impact. With the ageing population, its occurrence and costs are expected to grow even more in the future. Disc degeneration is characterized by matrix breakdown, loss in proteoglycans and thus water content, disc height loss and an increase in inflammatory molecules. The accumulation of cytokines, such as interleukin (IL)-1 , IL-8 or tumor necrosis factor (TNF)-, together with age-related immune deficiency, leads to the so-called inflammaging - low-grade, chronic inflammation with a crucial role in pain development. Despite the relevance of these molecular processes, current therapies target symptoms, but not underlying causes. This review describes the biological and biomechanical changes that occur in a degenerated disc, discusses the connection between disc degeneration and inflammaging, highlights factors that enhance the inflammatory processes in disc pathologies and suggests future research avenues.}, language = {en} }