@phdthesis{Kristen2011, author = {Kristen, Juliane Ute}, title = {Amphiphilic BAB-triblock copolymers bearing fluorocarbon groups : synthesis and self-organization in aqueous media}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-61782}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {In this work new fluorinated and non-fluorinated mono- and bifunctional trithiocarbonates of the structure Z-C(=S)-S-R and Z-C(=S)-S-R-S-C(=S)-Z were synthesized for the use as chain transfer agents (CTAs) in the RAFT-process. All newly synthesized CTAs were tested for their efficiency to moderate the free radical polymerization process by polymerizing styrene (M3). Besides characterization of the homopolymers by GPC measurements, end- group analysis of the synthesized block copolymers via 1H-, 19F-NMR, and in some cases also UV-vis spectroscopy, were performed attaching suitable fluorinated moieties to the Z- and/or R-groups of the CTAs. Symmetric triblock copolymers of type BAB and non-symmetric fluorine end- capped polymers were accessible using the RAFT process in just two or one polymerization step. In particular, the RAFT-process enabled the controlled polymerization of hydrophilic monomers such as N-isopropylacrylamide (NIPAM) (M1) as well as N-acryloylpyrrolidine (NAP) (M2) for the A-blocks and of the hydrophobic monomers styrene (M3), 2-fluorostyrene (M4), 3-fluorostyrene (M5), 4-fluorostyrene (M6) and 2,3,4,5,6-pentafluorostyrene (M7) for the B-blocks. The properties of the BAB-triblock copolymers were investigated in dilute, concentrated and highly concentrated aqueous solutions using DLS, turbidimetry, 1H- and 19F-NMR, rheology, determination of the CMC, foam height- and surface tension measurements and microscopy. Furthermore, their ability to stabilize emulsions and microemulsions and the wetting behaviour of their aqueous solutions on different substrates was investigated. The behaviour of the fluorine end-functionalized polymers to form micelles was studied applying DLS measurements in diluted organic solution. All investigated BAB-triblock copolymers were able to form micelles and show surface activity at room temperature in dilute aqueous solution. The aqueous solutions displayed moderate foam formation. With different types and concentrations of oils, the formation of emulsions could be detected using a light microscope. A boosting effect in microemulsions could not be found adding BAB-triblock copolymers. At elevated polymer concentrations, the formation of hydrogels was proved applying rheology measurements.}, language = {en} } @phdthesis{Federico2011, author = {Federico, Stefania}, title = {Synthetic peptides derived from decorin as building blocks for biomaterials based on supramolecular interactions}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-59661}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {In this work, the development of a new molecular building block, based on synthetic peptides derived from decorin, is presented. These peptides represent a promising basis for the design of polymer-based biomaterials that mimic the ECM on a molecular level and exploit specific biological recognition for technical applications. Multiple sequence alignments of the internal repeats of decorin that formed the inner and outer surface of the arch-shaped protein were used to develop consensus sequences. These sequences contained conserved sequence motifs that are likely to be related to structural and functional features of the protein. Peptides representative for the consensus sequences were synthesized by microwave-assisted solid phase peptide synthesis and purified by RP-HPLC, with purities higher than 95 mol\%. After confirming the desired masses by MALDI-TOF-MS, the primary structure of each peptide was investigated by 1H and 2D NMR, from which a full assignment of the chemical shifts was obtained. The characterization of the peptides conformation in solution was performed by CD spectroscopy, which demonstrated that using TFE, the peptides from the outer surface of decorin show a high propensity to fold into helical structures as observed in the original protein. To the contrary, the peptides from the inner surface did not show propensity to form stable secondary structure. The investigation of the binding capability of the peptides to Collagen I was performed by surface plasmon resonance analyses, from which all but one of the peptides representing the inner surface of decorin showed binding affinity to collagen with values of dissociation constant between 2•10-7 M and 2.3•10-4 M. On the other hand, the peptides representative for the outer surface of decorin did not show any significant interaction to collagen. This information was then used to develop experimental demonstration for the binding capabilities of the peptides from the inner surface of decorin to collagen even when used in more complicated situations close to possible appications. With this purpose, the peptide (LRELHLNNN) which showed the highest binding affinity to collagen (2•10-7 M) was functionalized with an N-terminal triple bond in order to obtain a peptide dimer via copper(I)-catalyzed cycloaddition reaction with 4,4'-diazidostilbene-2,2'-disulfonic acid. Rheological measurements showed that the presence of the peptide dimer was able to enhance the elastic modulus (G') of a collagen gel from ~ 600 Pa (collagen alone) to ~ 2700 Pa (collagen and peptide dimer). Moreover, it was shown that the mechanical properties of a collagen gel can be tailored by using different molar ratios of peptide dimer respect to collagen. The same peptide, functionalized with the triple bond, was used to obtain a peptide-dye conjugate by coupling it with N-(5'-azidopentanoyl)-5-aminofluorescein. An aqueous solution (5 vol\% methanol) of the peptide dye conjugate was injected into a collagen and a hyaluronic acid (HA) gel and images of fluorescence detection showed that the diffusion of the peptide was slower in the collagen gel compared to the HA gel. The third experimental demonstration was gained using the peptide (LSELRLHNN) which showed the lower binding affinity (2.3•10-4 M) to collagen. This peptide was grafted to hyaluronic acid via EDC-chemistry, with a degree of functionalization of 7 ± 2 mol\% as calculated by 1H-NMR. The grafting was further confirmed by FTIR and TGA measurements, which showed that the onset of decomposition for the HA-g-peptide decreased by 10 °C compared to the native HA. Rheological measurements showed that the elastic modulus of a system based on collagen and HA-g-peptide increased by almost two order of magnitude (G' = 200 Pa) compared to a system based on collagen and HA (G' = 0.9 Pa). Overall, this study showed that the synthetic peptides, which were identified from decorin, can be applied as potential building blocks for biomimetic materials that function via biological recognition.}, language = {en} } @phdthesis{Schaal2011, author = {Schaal, Janina}, title = {Synthese und Photochemie von photoaktivierbaren Biomolek{\"u}len}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-57929}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {Mechanistische und kinetische Untersuchungen von komplexen zellul{\"a}ren Prozessen in situ sind in den vergangenen Jahren durch den Einsatz photoaktivierbarer Biomolek{\"u}le, sogenannter caged Verbindungen, m{\"o}glich geworden. Bei den caged Verbindungen handelt es sich um photolabile inaktive Derivate von biologisch aktiven Molek{\"u}len, aus denen durch ultraviolettes Licht mit Hilfe einer photochemischen Reaktion die nat{\"u}rliche, biologisch aktive Substanz schnell freigesetzt werden kann. Im Rahmen der vorliegenden Arbeit wurden caged Verbindungen von den Neurotransmittern Octopamin und Dopamin, dem Octopamin-Antagonist Epinastin, den Proteinsyntheseinhibitoren Emetin und Anisomycin, dem Protonophor CCCP und dem Riechstoff Bourgeonal hergestellt. Zur Synthese dieser caged Verbindungen wurden sowohl bekannte als auch verschiedene im Rahmen dieser Arbeit neu entwickelte photolabile Schutzgruppen mit einem (Cumarin-4-yl)methyl- bzw. einem 2-Nitrobenzyl-Ger{\"u}st eingesetzt. Entsprechende Syntheseverfahren wurden erarbeitet. Anschließend erfolgte eine umfassende physikalisch-chemische sowie photochemische Charakterisierung der erhaltenen caged Verbindungen. Dabei wurde besonders auf gute L{\"o}slichkeit in Wasser bei physiologischer Ionenst{\"a}rke, schnelle und effiziente Photoreaktivit{\"a}t, hohe Extinktion bei Wellenl{\"a}ngen von 350-430 nm und gute solvolytische Stabilit{\"a}t bei geringer Toxizit{\"a}t der freigesetzten Schutzgruppe geachtet. Ein Schwerpunkt bei der photochemischen Charakterisierung bildeten die Untersuchungen zur Quantifizierung der 2-Photonen-Anregung, uncaging action cross-sections, der Cumarinylmethyl-caged Verbindungen, aufgrund ihrer Bedeutung f{\"u}r die Photofreisetzung von Biomolek{\"u}len, da die gleichzeitige Absorption von 2 IR-Photonen eine h{\"o}here dreidimensionale Aufl{\"o}sung und eine wesentlich tiefere Gewebepenetration erlaubt. Mit Hilfe von Kooperationspartnern wurden zeitaufgel{\"o}sten Fluoreszenz- und IR-Messungen an verschiedenen (Cumarin-4-yl)methoxycarbonyl-caged Modellverbindungen durchgef{\"u}hrt, mit denen die Geschwindigkeitskonstanten k1 und kdecarb des Photolysemechanismus ermittelt wurde. Am Ende folgten die Anwendungserprobungen ausgew{\"a}hlter caged Verbindungen in einem Translationsassay bzw. in Zelluntersuchungen.}, language = {de} } @phdthesis{Fellinger2011, author = {Fellinger, Tim-Patrick}, title = {Hydrothermal and ionothermal carbon structures}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-57825}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {The needs for sustainable energy generation, but also a sustainable chemistry display the basic motivation of the current thesis. By different single investigated cases, which are all related to the element carbon, the work can be devided into two major topics. At first, the sustainable synthesis of "useful" carbon materials employing the process of hydrothermal carbonisation (HC) is described. In the second part, the synthesis of heteroatom - containing carbon materials for electrochemical and fuel cell applications employing ionic liquid precursors is presented. On base of a thorough review of the literature on hydrothermolysis and hydrothermal carbonisation of sugars in addition to the chemistry of hydroxymethylfurfural, mechanistic considerations of the formation of hydrothermal carbon are proposed. On the base of these reaction schemes, the mineral borax, is introduced as an additive for the hydrothermal carbonisation of glucose. It was found to be a highly active catalyst, resulting in decreased reaction times and increased carbon yields. The chemical impact of borax, in the following is exploited for the modification of the micro- and nanostructure of hydrothermal carbon. From the borax - mediated aggregation of those primary species, widely applicable, low density, pure hydrothermal carbon aerogels with high porosities and specific surface areas are produced. To conclude the first section of the thesis, a short series of experiments is carried out, for the purpose of demonstrating the applicability of the HC model to "real" biowaste i.e. watermelon waste as feedstock for the production of useful materials. In part two cyano - containing ionic liquids are employed as precursors for the synthesis of high - performance, heteroatom - containing carbon materials. By varying the ionic liquid precursor and the carbonisation conditions, it was possible to design highly active non - metal electrocatalyst for the reduction of oxygen. In the direct reduction of oxygen to water (like used in polymer electrolyte fuel cells), compared to commercial platinum catalysts, astonishing activities are observed. In another example the selective and very cost efficient electrochemical synthesis of hydrogen peroxide is presented. In a last example the synthesis of graphitic boron carbon nitrides from the ionic liquid 1 - Ethyl - 3 - methylimidazolium - tetracyanoborate is investigated in detail. Due to the employment of unreactive salts as a new tool to generate high surface area these materials were first time shown to be another class of non - precious metal oxygen reduction electrocatalyst.}, language = {en} } @phdthesis{Haase2011, author = {Haase, Martin F.}, title = {Modification of nanoparticle surfaces for emulsion stabilization and encapsulation of active molecules for anti-corrosive coatings}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-55413}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {Within this work, three physicochemical methods for the hydrophobization of initially hydrophilic solid particles are investigated. The modified particles are then used for the stabilization of oil-in-water (o/w) emulsions. For all introduced methods electrostatic interactions between strongly or weakly charged groups in the system are es-sential. (i) Short chain alkylammonium bromides (C4 - C12) adsorb on oppositely charged solid particles. Macroscopic contact angle measurements of water droplets under air and hexane on flat silica surfaces in dependency of the surface charge density and alkylchain-length allow the calculation of the surface energy and give insights into the emulsification properties of solid particles modified with alkyltrimethylammonium bromides. The measure-ments show an increase of the contact angle with increasing surface charge density, due to the enhanced adsorp-tion of the oppositely charged alkylammonium bromides. Contact angles are higher for longer alkylchain lengths. The surface energy calculations show that in particular the surface-hexane or surface-air interfacial en-ergy is being lowered upon alkylammonium adsorption, while a significant increase of the surface-water interfa-cial energy occurs only at long alkyl chain lengths and high surface charge densities. (ii) The thickness and the charge density of an adsorbed weak polyelectrolyte layer (e.g. PMAA, PAH) influence the wettability of nanoparticles (e.g. alumina, silica, see Scheme 1(b)). Furthermore, the isoelectric point and the pH range of colloidal stability of particle-polyelectrolyte composites depend on the thickness of the weak polye-lectrolyte layer. Silica nanoparticles with adsorbed PAH and alumina nanoparticles with adsorbed PMAA be-come interfacially active and thus able to stabilize o/w emulsions when the degree of dissociation of the polye-lectrolyte layer is below 80 \%. The average droplet size after emulsification of dodecane in water depends on the thickness and the degree of dissociation of the adsorbed PE-layer. The visualization of the particle-stabilized o/w emulsions by cryogenic SEM shows that for colloidally stable alumina-PMAA composites the oil-water interface is covered with a closely packed monolayer of particles, while for the colloidally unstable case closely packed aggregated particles deposit on the interface. (iii) By emulsifying a mixture of the corrosion inhibitor 8-hydroxyquinoline (8-HQ) and styrene with silica nanoparticles a highly stable o/w emulsion can be obtained in a narrow pH window. The amphoteric character of 8-HQ enables a pH dependent electrostatic interaction with silica nanoparticles, which can render them interfa-cially active. Depending on the concentration and the degree of dissociation of 8-HQ the adsorption onto silica results from electrostatic or aromatic interactions between 8-HQ and the particle-surface. At intermediate amounts of adsorbed 8-HQ the oil wettability of the particles becomes sufficient for stabilizing o/w emulsions. Cryogenic SEM visualization shows that the particles arrange then in a closely packed shell consisting of partly of aggregated domains on the droplet interface. For further increasing amounts of adsorbed 8-HQ the oil wet-tability is reduced again and the particles ability to stabilize emulsions decreases. By the addition of hexadecane to the oil phase the size of the droplets can be reduced down to 200 nm by in-creasing the silica mass fraction. Subsequent polymerization produces corrosion inhibitor filled (20 wt-\%) poly-styrene-silica composite particles. The measurement of the release of 8-hydroxyquinoline shows a rapid increase of 8-hydroxyquinoline in a stirred aqueous solution indicating the release of the total content in less than 5 min-utes. The method is extended for the encapsulation of other organic corrosion inhibitors. The silica-polymer-inhibitor composite particles are then dispersed in a water based alkyd emulsion, and the dispersion is used to coat flat aluminium substrates. After drying and cross-linking the polmer-film Confocal Laser Scanning Micros-copy is employed revealing a homogeneous distribution of the particles in the film. Electrochemical Impedance Spectroscopy in aqueous electrolyte solutions shows that films with aggregated particle domains degrade with time and don't provide long-term corrosion protection of the substrate. However, films with highly dispersed particles have high barrier properties for corrosive species. The comparison of films containing silica-polystyrene composite particles with and without 8-hydroxyquinoline shows higher electrochemical impedances when the inhibitor is present in the film. By applying the Scanning Vibrating Electrode Technique the localized corrosion rate in the fractured area of scratched polymer films containing the silica-polymer-inhibitor composite particles is studied. Electrochemical corrosion cannot be suppressed but the rate is lowered when inhibitor filled composite particles are present in the film. By depositing six polyelectrolyte layers on particle stabilized emulsion droplets their surface morphology changes significantly as shown by SEM visualization. When the oil wettability of the outer polyelectrolyte layer increases, the polyelectrolyte coated droplets can act as emulsion stabilizers themselves by attaching onto bigger oil droplets in a closely packed arrangement. In the presence of 3 mM LaCl3 8-HQ hydrophobized silica particles aggregate strongly on the oil-water inter-face. The application of an ultrasonic field can remove two dimensional shell-compartments from the droplet surface, which are then found in the aqueous bulk phase. Their size ranges up to 1/4th of the spherical particle shell.}, language = {en} } @phdthesis{ValverdeSerrano2011, author = {Valverde Serrano, Clara}, title = {Self-assembly behavior in hydrophilic block copolymers}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-54163}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {Block copolymers are receiving increasing attention in the literature. Reports on amphiphilic block copolymers have now established the basis of their self-assembly behavior: aggregate sizes, morphologies and stability can be explained from the absolute and relative block lengths, the nature of the blocks, the architecture and also solvent selectiveness. In water, self-assembly of amphiphilic block copolymers is assumed to be driven by the hydrophobic. The motivation of this thesis is to study the influence on the self-assembly in water of A b B type block copolymers (with A hydrophilic) of the variation of the hydrophilicity of B from non-soluble (hydrophobic) to totally soluble (hydrophilic). Glucose-modified polybutadiene-block-poly(N-isopropylacrylamide) copolymers were prepared and their self-assembly behavior in water studied. The copolymers formed vesicles with an asymmetric membrane with a glycosylated exterior and poly(N-isopropylacrylamide) on the inside. Above the low critical solution temperature (LCST) of poly(N-isopropylacrylamide), the structure collapsed into micelles with a hydrophobic PNIPAM core and glycosylated exterior. This collapse was found to be reversible. As a result, the structures showed a temperature-dependent interaction with L-lectin proteins and were shown to be able to encapsulate organic molecules. Several families of double hydrophilic block copolymers (DHBC) were prepared. The blocks of these copolymers were biopolymers or polymer chimeras used in aqueous two-phase partition systems. Copolymers based on dextran and poly(ethylene glycol) blocks were able to form aggregates in water. Dex6500-b-PEG5500 copolymer spontaneously formed vesicles with PEG as the "less hydrophilic" barrier and dextran as the solubilizing block. The aggregates were found to be insensitive to the polymer's architecture and concentration (in the dilute range) and only mildly sensitive to temperature. Variation of the block length, yielded different morphologies. A longer PEG chain seemed to promote more curved aggregates following the inverse trend usually observed in amphiphilic block copolymers. A shorter dextran promoted vesicular structures as usually observed for the amphiphilic counterparts. The linking function was shown to have an influence of the morphology but not on the self-assembly capability in itself. The vesicles formed by dex6500-b-PEG5500 showed slow kinetics of clustering in the presence of Con A lectin. In addition both dex6500-b-PEG5500 and its crosslinked derivative were able to encapsulate fluorescent dyes. Two additional dextran-based copolymers were synthesized, dextran-b-poly(vinyl alcohol) and dextran-b-poly(vinyl pyrrolidone). The study of their self-assembly allowed to conclude that aqueous two-phase systems (ATPS) is a valid source of inspiration to conceive DHBCs capable of self-assembling. In the second part the principle was extended to polypeptide systems with the synthesis of a poly(N-hydroxyethylglutamine)-block-poly(ethylene glycol) copolymer. The copolymer that had been previously reported to have emulsifying properties was able to form vesicles by direct dissolution of the solid in water. Last, a series of thermoresponsive copolymers were prepared, dextran-b-PNIPAMm. These polymers formed aggregates below the LCST. Their structure could not be unambiguously elucidated but seemed to correspond to vesicles. Above the LCST, the collapse of the PNIPAM chains induced the formation of stable objects of several hundreds of nanometers in radius that evolved with increasing temperature. The cooling of these solution below LCST restored the initial aggregates. This self-assembly of DHBC outside any stimuli of pH, ionic strength, or temperature has only rarely been described in the literature. This work constituted the first formal attempt to frame the phenomenon. Two reasons were accounted for the self-assembly of such systems: incompatibility of the polymer pairs forming the two blocks (enthalpic) and a considerable solubility difference (enthalpic and entropic). The entropic contribution to the positive Gibbs free energy of mixing is believed to arise from the same loss of conformational entropy that is responsible for "the hydrophobic effect" but driven by a competition for water of the two blocks. In that sense this phenomenon should be described as the "hydrophilic effect".}, language = {en} } @phdthesis{Klinkusch2011, author = {Klinkusch, Stefan}, title = {Simulations of laser-induced correlated many-electron dynamics in molecular systems}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-55445}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {In this thesis, simulations of laser-driven many-electron dynamics in molecules are presented, i.e., the interaction between molecules and an electromagnetic field is demonstrated. When a laser field is applied to a molecular system, a population of higher electronic states takes place as well as other processes, e.g. photoionization, which is described by an appropriate model. Also, a finite lifetime of an excited state can be described by such a model. In the second part, a method is postulated that is capable of describing electron correlation in a time-dependent scheme. This is done by introducing a single-electron entropy that is at least temporarily minimized in a further step.}, language = {en} } @phdthesis{Popovic2011, author = {Popovic, Jelena}, title = {Novel lithium iron phosphate materials for lithium-ion batteries}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-54591}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {Conventional energy sources are diminishing and non-renewable, take million years to form and cause environmental degradation. In the 21st century, we have to aim at achieving sustainable, environmentally friendly and cheap energy supply by employing renewable energy technologies associated with portable energy storage devices. Lithium-ion batteries can repeatedly generate clean energy from stored materials and convert reversely electric into chemical energy. The performance of lithium-ion batteries depends intimately on the properties of their materials. Presently used battery electrodes are expensive to be produced; they offer limited energy storage possibility and are unsafe to be used in larger dimensions restraining the diversity of application, especially in hybrid electric vehicles (HEVs) and electric vehicles (EVs). This thesis presents a major progress in the development of LiFePO4 as a cathode material for lithium-ion batteries. Using simple procedure, a completely novel morphology has been synthesized (mesocrystals of LiFePO4) and excellent electrochemical behavior was recorded (nanostructured LiFePO4). The newly developed reactions for synthesis of LiFePO4 are single-step processes and are taking place in an autoclave at significantly lower temperature (200 deg. C) compared to the conventional solid-state method (multi-step and up to 800 deg. C). The use of inexpensive environmentally benign precursors offers a green manufacturing approach for a large scale production. These newly developed experimental procedures can also be extended to other phospho-olivine materials, such as LiCoPO4 and LiMnPO4. The material with the best electrochemical behavior (nanostructured LiFePO4 with carbon coating) was able to delive a stable 94\% of the theoretically known capacity.}, language = {en} } @phdthesis{Goebel2011, author = {G{\"o}bel, Ronald}, title = {Hybridmaterialien aus mesopor{\"o}sen Silica und ionischen Fl{\"u}ssigkeiten}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-54022}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {Die vorliegende Arbeit besch{\"a}ftigt sich mit der Synthese und Charakterisierung mesopor{\"o}ser monolithischer Silica und deren Hybridmaterialien mit Ionischen Fl{\"u}ssigkeiten (ILs, ionic liquids). Zur Synthese der Silicaproben wurde ein Sol-Gel-Verfahren, ausgehend von einer Pr{\"a}kursorverbindung wie Tetramethylorthosilicat angewendet. Der Katalysator mit der geringsten Basizit{\"a}t f{\"u}hrte zum Material mit der kleinsten Porengr{\"o}ße und der gr{\"o}ßten spezifischen Oberfl{\"a}che. Eine Kombination von por{\"o}sen Silica mit ILs f{\"u}hrt zur Materialklasse der Silica-Ionogele. Diese Hybridmaterialien verbinden die Eigenschaften eines por{\"o}sen Festk{\"o}rpers mit denen einer IL (Leitf{\"a}higkeit, weites elektrochemisches Fenster, gute thermische Stabilit{\"a}t) und bieten vielf{\"a}ltige Einsatzm{\"o}glichkeiten z.B. in der Katalyse- Solar- und Sensortechnik. Um diese Materialien f{\"u}r ihren Verwendungszweck zu optimieren, bedarf es deren umfassenden Charakterisierung. Daher wurde in der vorliegenden Arbeit das thermische Verhalten von Silica-Ionogelen unter Verwendung verschiedener 1-Ethyl-3-methylimidazolium [Emim]-basierter ILs untersucht. Interessanterweise zeigen die untersuchten ILs deutliche {\"A}nderungen in ihrem thermischen Verhalten, wenn diese in por{\"o}sen Materialien eingeschlossen werden (Confinement). W{\"a}hrend sich die untersuchten reinen ILs durch klar unterscheidbare Phasen{\"u}berg{\"a}nge auszeichnen, konnten f{\"u}r die entsprechenden Hybridmaterialien deutlich schw{\"a}cher ausgepr{\"a}gte {\"U}berg{\"a}nge beobachtet werden. Einzelne Phasen{\"u}berg{\"a}nge wurden unterdr{\"u}ckt (Glas- und Kristallisations{\"u}berg{\"a}nge), w{\"a}hrend z.B. Schmelz{\"u}berg{\"a}nge in verbreiterten Temperaturbereichen, zum Teil als einzeln getrennte Schmelzpeaks beobachtet wurden. Diese Untersuchungen belegen deutliche Eigenschafts{\"a}nderungen der ILs in eingeschr{\"a}nkten Geometrien. {\"U}ber Festk{\"o}rper-NMR-Spektroskopie konnte außerdem gezeigt werden, daß die ILs in den mesopor{\"o}sen Silicamaterialien eine unerwartet hohe Mobilit{\"a}t aufweisen. Die ILs k{\"o}nnen als quasi-fl{\"u}ssig bezeichnet werden und zeigen die nach bestem Wissen h{\"o}chste Mobilit{\"a}t, die bisher f{\"u}r vergleichbare Hybridmaterialien beobachtet wurde. Durch Verwendung von funktionalisierten Pr{\"a}kursoren, sowie der Wahl der Reaktionsbedingungen, kann die Oberfl{\"a}che der Silicamaterialien chemisch funktionalisiert werden und damit die Materialeigenschaften in der gew{\"u}nschten Weise beeinflußt werden. In der vorliegenden Arbeit wurde der Einfluß der Oberfl{\"a}chenfunktionalit{\"a}t auf das thermische Verhalten hin untersucht. Dazu wurden zwei verschiedene M{\"o}glichkeiten der Funktionalisierung angewendet und miteinander verglichen. Bei der in-situ-Funktionalisierung wird die chemische Funktionalit{\"a}t w{\"a}hrend der Sol-Gel-Synthese {\"u}ber ein entsprechend funktionalisiertes Silan mit in das Silicamaterial einkondensiert. Eine postsynthetische Funktionalisierung erfolgt durch Reaktion der Endgruppen eines Silicamaterials mit geeigneten Reaktionspartnern. Um den Einfluß der physikalischen Eigenschaften der Probe auf die Reaktion zu untersuchen, wurden pulverisierte und monolithische Silicamaterialien miteinander verglichen. Im letzten Teil der Arbeit wurde die Vielf{\"a}ltigkeit, mit der Silicamaterialien postsynthetisch funktionalisiert werden k{\"o}nnen demonstriert. Durch die Kenntnis von Struktur-Eigenschaftsbeziehungen k{\"o}nnen die Eigenschaften von Silica-Ionogelen durch die geeignete Kombination von fester und mobiler Phase in der gew{\"u}nschten Weise ver{\"a}ndert werden. Die vorliegende Arbeit soll einen Beitrag zur Untersuchung dieser Beziehungen leisten, um das Potential dieser interessanten Materialien f{\"u}r Anwendungen nutzen zu k{\"o}nnen.}, language = {de} } @phdthesis{Weiss2011, author = {Weiß, Jan}, title = {Synthesis and self-assembly of multiple thermoresponsive amphiphilic block copolymers}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-53360}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {In the present thesis, the self-assembly of multi thermoresponsive block copolymers in dilute aqueous solution was investigated by a combination of turbidimetry, dynamic light scattering, TEM measurements, NMR as well as fluorescence spectroscopy. The successive conversion of such block copolymers from a hydrophilic into a hydrophobic state includes intermediate amphiphilic states with a variable hydrophilic-to-lipophilic balance. As a result, the self-organization is not following an all-or-none principle but a multistep aggregation in dilute solution was observed. The synthesis of double thermoresponsive diblock copolymers as well as triple thermoresponsive triblock copolymers was realized using twofold-TMS labeled RAFT agents which provide direct information about the average molar mass as well as residual end group functionality from a routine proton NMR spectrum. First a set of double thermosensitive diblock copolymers poly(N-n-propylacrylamide)-b-poly(N-ethylacrylamide) was synthesized which differed only in the relative size of the two blocks. Depending on the relative block lengths, different aggregation pathways were found. Furthermore, the complementary TMS-labeled end groups served as NMR-probes for the self-assembly of these diblock copolymers in dilute solution. Reversible, temperature sensitive peak splitting of the TMS-signals in NMR spectroscopy was indicative for the formation of mixed star-/flower-like micelles in some cases. Moreover, triple thermoresponsive triblock copolymers from poly(N-n-propylacrylamide) (A), poly(methoxydiethylene glycol acrylate) (B) and poly(N-ethylacrylamide) (C) were obtained from sequential RAFT polymerization in all possible block sequences (ABC, BAC, ACB). Their self-organization behavior in dilute aqueous solution was found to be rather complex and dependent on the positioning of the different blocks within the terpolymers. Especially the localization of the low-LCST block (A) had a large influence on the aggregation behavior. Above the first cloud point, aggregates were only observed when the A block was located at one terminus. Once placed in the middle, unimolecular micelles were observed which showed aggregation only above the second phase transition temperature of the B block. Carrier abilities of such triple thermosensitive triblock copolymers tested in fluorescence spectroscopy, using the solvatochromic dye Nile Red, suggested that the hydrophobic probe is less efficiently incorporated by the polymer with the BAC sequence as compared to ABC or ACB polymers above the first phase transition temperature. In addition, due to the problem of increasing loss of end group functionality during the subsequent polymerization steps, a novel concept for the one-step synthesis of multi thermoresponsive block copolymers was developed. This allowed to synthesize double thermoresponsive di- and triblock copolymers in a single polymerization step. The copolymerization of different N-substituted maleimides with a thermosensitive styrene derivative (4-vinylbenzyl methoxytetrakis(oxyethylene) ether) led to alternating copolymers with variable LCST. Consequently, an excess of this styrene-based monomer allowed the synthesis of double thermoresponsive tapered block copolymers in a single polymerization step.}, language = {en} }