@phdthesis{Ramachandran2019, author = {Ramachandran, Varsha}, title = {Massive star evolution, star formation, and feedback at low metallicity}, doi = {10.25932/publishup-43245}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-432455}, school = {Universit{\"a}t Potsdam}, pages = {291}, year = {2019}, abstract = {The goal of this thesis is to broaden the empirical basis for a better, comprehensive understanding of massive star evolution, star formation and feedback at low metallicity. Low metallicity massive stars are a key to understand the early universe. Quantitative information on metal-poor massive stars was sparse before. The quantitative spectroscopic studies of massive star populations associated with large-scale ISM structures were not performed at low metallicity before, but are important to investigate star-formation histories and feedback in detail. Much of this work relies on spectroscopic observations with VLT-FLAMES of ~500 OB stars in the Magellanic Clouds. When available, the optical spectroscopy was complemented by UV spectra from the HST, IUE, and FUSE archives. The two representative young stellar populations that have been studied are associated with the superbubble N 206 in the Large Magellanic Cloud (LMC) and with the supergiant shell SMC-SGS 1 in the Wing of the Small Magellanic Cloud (SMC), respectively. We performed spectroscopic analyses of the massive stars using the nonLTE Potsdam Wolf-Rayet (PoWR) model atmosphere code. We estimated the stellar, wind, and feedback parameters of the individual massive stars and established their statistical distributions. The mass-loss rates of N206 OB stars are consistent with theoretical expectations for LMC metallicity. The most massive and youngest stars show nitrogen enrichment at their surface and are found to be slower rotators than the rest of the sample. The N 206 complex has undergone star formation episodes since more than 30 Myr, with a current star formation rate higher than average in the LMC. The spatial age distribution of stars across the complex possibly indicates triggered star formation due to the expansion of the superbubble. Three very massive, young Of stars in the region dominate the ionizing and mechanical feedback among hundreds of other OB stars in the sample. The current stellar wind feedback rate from the two WR stars in the complex is comparable to that released by the whole OB sample. We see only a minor fraction of this stellar wind feedback converted into X-ray emission. In this LMC complex, stellar winds and supernovae equally contribute to the total energy feedback, which eventually powered the central superbubble. However, the total energy input accumulated over the time scale of the superbubble significantly exceeds the observed energy content of the complex. The lack of energy along with the morphology of the complex suggests a leakage of hot gas from the superbubble. With a detailed spectroscopic study of massive stars in SMC-SGS 1, we provide the stellar and wind parameters of a large sample of OB stars at low metallicity, including those in the lower mass-range. The stellar rotation velocities show a broad, tentatively bimodal distribution, with Be stars being among the fastest. A few very luminous O stars are found close to the main sequence, while all other, slightly evolved stars obey a strict luminosity limit. Considering additional massive stars in evolved stages, with published parameters and located all over the SMC, essentially confirms this picture. The comparison with single-star evolutionary tracks suggests a dichotomy in the fate of massive stars in the SMC. Only stars with an initial mass below 30 solar masses seem to evolve from the main sequence to the cool side of the HRD to become a red supergiant and to explode as type II-P supernova. In contrast, more massive stars appear to stay always hot and might evolve quasi chemically homogeneously, finally collapsing to relatively massive black holes. However, we find no indication that chemical mixing is correlated with rapid rotation. We measured the key parameters of stellar feedback and established the links between the rates of star formation and supernovae. Our study demonstrates that in metal-poor environments stellar feedback is dominated by core-collapse supernovae in combination with winds and ionizing radiation supplied by a few of the most massive stars. We found indications of the stochastic mode of star formation, where the resulting stellar population is fully capable of producing large-scale structures such as the supergiant shell SMC-SGS 1 in the Wing. The low level of feedback in metal-poor stellar populations allows star formation episodes to persist over long timescales. Our study showcases the importance of quantitative spectroscopy of massive stars with adequate stellar-atmosphere models in order to understand star-formation, evolution, and feedback. The stellar population analyses in the LMC and SMC make us understand that massive stars and their impact can be very different depending on their environment. Obviously, due to their different metallicity, the massive stars in the LMC and the SMC follow different evolutionary paths. Their winds differ significantly, and the key feedback agents are different. As a consequence, the star formation can proceed in different modes.}, language = {en} } @phdthesis{Sablowski2019, author = {Sablowski, Daniel}, title = {Spectroscopic analysis of the benchmark system Alpha Aurigae}, doi = {10.25932/publishup-43239}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-432396}, school = {Universit{\"a}t Potsdam}, pages = {169}, year = {2019}, abstract = {Binaries play an important role in observational and theoretical astrophysics. Since the mass and the chemical composition are key ingredients for stellar evolution, high-resolution spectroscopy is an important and necessary tool to derive those parameters to high confidence in binaries. This involves carefully measured orbital motion by the determination of radial velocity (RV) shifts and sophisticated techniques to derive the abundances of elements within the stellar atmosphere. A technique superior to conventional cross-correlation methods to determine RV shifts in known as spectral disentangling. Hence, a major task of this thesis was the design of a sophisticated software package for this approach. In order to investigate secondary effects, such as flux and line-profile variations, imprinting changes on the spectrum the behavior of spectral disentangling on such variability is a key to understand the derived values, to improve them, and to get information about the variability itself. Therefore, the spectral disentangling code presented in this thesis and available to the community combines multiple advantages: separation of the spectra for detailed chemical analysis, derivation of orbital elements, derivation of individual RVs in order to investigate distorted systems (either by third body interaction or relativistic effects), the suppression of telluric contaminations, the derivation of variability, and the possibility to apply the technique to eclipsing binaries (important for orbital inclination) or in general to systems that undergo flux-variations. This code in combination with the spectral synthesis codes MOOG and SME was used in order to derive the carbon 12C/13C isotope ratio (CIR) of the benchmark binary Capella. The observational result will be set into context with theoretical evolution by the use of MESA models and resolves the discrepancy of theory and observations existing since the first measurement of Capella's CIR in 1976. The spectral disentangling code has been made available to the community and its applicability to completely different behaving systems, Wolf-Rayet stars, have also been investigated and resulted in a published article. Additionally, since this technique relies strongly on data quality, continues development of scientific instruments to achieve best observational data is of great importance in observational astrophysics. That is the reason why there has also been effort in astronomical instrumentation during the work on this thesis.}, language = {en} } @phdthesis{Menski2019, author = {Menski, Antonia Isabell}, title = {Europium als strukturelle Sonde zur Analyse neuartiger Materialien}, doi = {10.25932/publishup-42714}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-427141}, school = {Universit{\"a}t Potsdam}, pages = {181}, year = {2019}, abstract = {Im Rahmen dieser Arbeit wird anhand von neuartigen Materialien das Potential der Europium-Lumineszenz f{\"u}r die strukturelle Analyse dargestellt. Bei diesen Materialien handelt es sich zum einen um Nanopartikel mit Matrizes aus mehreren Metall-Mischoxiden und Dotierungen durch die Sonde Europium und zum anderen um Metallorganische Netzwerke (MOFs), die mit Neodym , Samarium- und Europium-Ionen beladen sind. Die Synthese der aus der Kombination von Metalloxiden enthaltenen Nanopartikel ist unter milden Bedingungen mithilfe von speziell daf{\"u}r hergestellten Reagenzien erfolgt und hat zu sehr kleinen, amorphen Nanopartikeln gef{\"u}hrt. Durch eine nachfolgende Temperaturbehandlung hat sich die Kristallinit{\"a}t erh{\"o}ht. Damit verbunden haben sich auch die Kristallstruktur sowie die Position des Dotanden Europium ver{\"a}ndert. W{\"a}hrend die etablierte Methode der R{\"o}ntgendiffraktometrie einen Blick auf das Kristallgitter als Gesamtes erm{\"o}glicht, so trifft die Lumineszenz des Europiums durch die Sichtbarkeit einzelner Stark-Aufspaltungen Aussagen {\"u}ber dessen lokale Symmetrien. Die Symmetrie wird durch Sauerstofffehlstellen ver{\"a}ndert, welche die Sauerstoffleitf{\"a}higkeit der Nanopartikel beeinflussen. Diese ist f{\"u}r die Anwendung als Katalysatoren in industriellen Prozessen und ebenso als Sensoren und Therapeutika in biologischen Systemen von Bedeutung. Zur ersten katalytischen Charakterisierung werden die Proben mittels Temperatur-programmierter Reduktion untersucht. Des Weiteren werden die Mischoxid-Nanopartikel auch hinsichtlich ihrer Verwendbarkeit als Matrix in Aufkonversionsprozessen untersucht. Die Metallorganischen Netzwerke eignen sich aufgrund ihrer mikropor{\"o}sen Struktur f{\"u}r Anwendungen in der Speicherung gleichermaßen von Nutzgasen wie auch von Schadstoffen. Ebenfalls ist eine biologische Anwendung denkbar, die insbesondere den Bereich der drug delivery-Reagenzien betrifft. Erfolgt in die mikropor{\"o}sen Strukturen der Metallorganischen Netzwerke die Einlagerung von Lanthanoid-Ionen, so k{\"o}nnen diese bei der entsprechenden Kombination als Weißlicht-Emittierer fungieren. Dabei ist neben den Verh{\"a}ltnissen zwischen den Lanthanoid-Ionen auch die genaue Position innerhalb des Netzwerks sowie die Distanz zu anderen Ionen von Interesse. Zur Untersuchung dieser Fragestellungen wird die Umgebungssensitivit{\"a}t der Europium-Lumineszenz ausgenutzt. Die auf diese Weise festgestellte Formiat-Bildung h{\"a}ngt von zahlreichen Parametern ab. Insgesamt stellt sich die im Rahmen dieser Arbeit verwendete Methodik des Einsatzes von Europium als strukturelle Sonde in h{\"o}chstem Maße vielseitig dar und zeigt seine gr{\"o}ßte St{\"a}rke in der Kombination mit weiteren Methoden der Strukturanalytik. Die auf diese Weise genauestens charakterisierten neuartigen Materialien k{\"o}nnen nun gezielt und anwendungsfokussiert weiterentwickelt werden.}, language = {de} }