@phdthesis{MartinezGuajardo2024, author = {Mart{\´i}nez Guajardo, Alejandro}, title = {New zwitterionic polymers for antifouling applications}, doi = {10.25932/publishup-62682}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-626820}, school = {Universit{\"a}t Potsdam}, pages = {XIX, 145}, year = {2024}, abstract = {The remarkable antifouling properties of zwitterionic polymers in controlled environments are often counteracted by their delicate mechanical stability. In order to improve the mechanical stabilities of zwitterionic hydrogels, the effect of increased crosslinker densities was thus explored. In a first approach, terpolymers of zwitterionic monomer 3-[N -2(methacryloyloxy)ethyl-N,N-dimethyl]ammonio propane-1-sulfonate (SPE), hydrophobic monomer butyl methacrylate (BMA), and photo-crosslinker 2-(4-benzoylphenoxy)ethyl methacrylate (BPEMA) were synthesized. Thin hydrogel coatings of the copolymers were then produced and photo-crosslinked. Studies of the swollen hydrogel films showed that not only the mechanical stability but also, unexpectedly, the antifouling properties were improved by the presence of hydrophobic BMA units in the terpolymers. Based on the positive results shown by the amphiphilic terpolymers and in order to further test the impact that hydrophobicity has on both the antifouling properties of zwitterionic hydrogels and on their mechanical stability, a new amphiphilic zwitterionic methacrylic monomer, 3-((2-(methacryloyloxy)hexyl)dimethylammonio)propane-1-sulfonate (M1), was synthesized in good yields in a multistep synthesis. Homopolymers of M1 were obtained by free-radical polymerization. Similarly, terpolymers of M1, zwitterionic monomer SPE, and photo-crosslinker BPEMA were synthesized by free-radical copolymerization and thoroughly characterized, including its solubilities in selected solvents. Also, a new family of vinyl amide zwitterionic monomomers, namely 3-(dimethyl(2-(N -vinylacetamido)ethyl)ammonio)propane-1-sulfonate (M2), 4-(dimethyl(2-(N-vinylacetamido)ethyl)ammonio)butane-1-sulfonate (M3), and 3-(dimethyl(2-(N-vinylacetamido)ethyl)ammonio)propyl sulfate (M4), together with the new photo-crosslinker 4-benzoyl-N-vinylbenzamide (M5) that is well-suited for copolymerization with vinylamides, are introduced within the scope of the present work. The monomers are synthesized with good yields developing a multistep synthesis. Homopolymers of the new vinyl amide zwitterionic monomers are obtained by free-radical polymerization and thoroughly characterized. From the solubility tests, it is remarkable that the homopolymers produced are fully soluble in water, evidence of their high hydrophilicity. Copolymerization of the vinyl amide zwitterionic monomers, M2, M3, and M4 with the vinyl amide photo-crosslinker M5 proved to require very specific polymerization conditions. Nevertheless, copolymers were successfully obtained by free-radical copolymerization under appropriate conditions. Moreover, in an attempt to mitigate the intrinsic hydrophobicity introduced in the copolymers by the photo-crosslinkers, and based on the proven affinity of quaternized diallylamines to copolymerize with vinyl amides, a new quaternized diallylamine sulfobetaine photo-crosslinker 3-(diallyl(2-(4-benzoylphenoxy)ethyl)ammonio)propane-1-sulfonate (M6) is synthesized. However, despite a priori promising copolymerization suitability, copolymerization with the vinyl amide zwitterionic monomers could not be achieved.}, language = {en} }