@phdthesis{Hasl2023, author = {Hasl, Andrea}, title = {Time matters: Adopting a lifespan developmental perspective on individual differences in skills, cumulative advantages, and the role of dynamic modeling approaches}, doi = {10.25932/publishup-59511}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-595112}, school = {Universit{\"a}t Potsdam}, pages = {274}, year = {2023}, abstract = {The impact of individual differences in cognitive skills and socioeconomic background on key educational, occupational, and health outcomes, as well as the mechanisms underlying inequalities in these outcomes across the lifespan, are two central questions in lifespan psychology. The contextual embeddedness of such questions in ontogenetic (i.e., individual, age-related) and historical time is a key element of lifespan psychological theoretical frameworks such as the HIstorical changes in DEvelopmental COntexts (HIDECO) framework (Drewelies et al., 2019). Because the dimension of time is also a crucial part of empirical research designs examining developmental change, a third central question in research on lifespan development is how the timing and spacing of observations in longitudinal studies might affect parameter estimates of substantive phenomena. To address these questions in the present doctoral thesis, I applied innovative state-of-the-art methodology including static and dynamic longitudinal modeling approaches, used data from multiple international panel studies, and systematically simulated data based on empirical panel characteristics, in three empirical studies. The first study of this dissertation, Study I, examined the importance of adolescent intelligence (IQ), grade point average (GPA), and parental socioeconomic status (pSES) for adult educational, occupational, and health outcomes over ontogenetic and historical time. To examine the possible impact of historical changes in the 20th century on the relationships between adolescent characteristics and key adult life outcomes, the study capitalized on data from two representative US cohort studies, the National Longitudinal Surveys of Youth 1979 and 1997, whose participants were born in the late 1960s and 1980s, respectively. Adolescent IQ, GPA, and pSES were positively associated with adult educational attainment, wage levels, and mental and physical health. Across historical time, the influence of IQ and pSES for educational, occupational, and health outcomes remained approximately the same, whereas GPA gained in importance over time for individuals born in the 1980s. The second study of this dissertation, Study II, aimed to examine strict cumulative advantage (CA) processes as possible mechanisms underlying individual differences and inequality in wage development across the lifespan. It proposed dynamic structural equation models (DSEM) as a versatile statistical framework for operationalizing and empirically testing strict CA processes in research on wages and wage dynamics (i.e., wage levels and growth rates). Drawing on longitudinal representative data from the US National Longitudinal Survey of Youth 1979, the study modeled wage levels and growth rates across 38 years. Only 0.5 \% of the sample revealed strict CA processes and explosive wage growth (autoregressive coefficients AR > 1), with the majority of individuals following logarithmic wage trajectories across the lifespan. Adolescent intelligence (IQ) and adult highest educational level explained substantial heterogeneity in initial wage levels and long-term wage growth rates over time. The third study of this dissertation, Study III, investigated the role of observation timing variability in the estimation of non-experimental intervention effects in panel data. Although longitudinal studies often aim at equally spaced intervals between their measurement occasions, this goal is hardly ever met. Drawing on continuous time dynamic structural equation models, the study examines the -seemingly counterintuitive - potential benefits of measurement intervals that vary both within and between participants (often called individually varying time intervals, IVTs) in a panel study. It illustrates the method by modeling the effect of the transition from primary to secondary school on students' academic motivation using empirical data from the German National Educational Panel Study (NEPS). Results of a simulation study based on this real-life example reveal that individual variation in time intervals can indeed benefit the estimation precision and recovery of the true intervention effect parameters.}, language = {en} }