@phdthesis{Kraut2001, author = {Kraut, Suso}, title = {Multistable systems under the influence of noise}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0000424}, school = {Universit{\"a}t Potsdam}, year = {2001}, abstract = {Nichtlineare multistabile Systeme unter dem Einfluss von Rauschen weisen vielschichtige dynamische Eigenschaften auf. Ein mittleres Rauschlevel zeitigt ein Springen zwischen den metastabilen Zustaenden. Dieser "attractor-hopping" Prozess ist gekennzeichnet durch laminare Bewegung in der Naehe von Attraktoren und erratische Bewegung, die sich auf chaotischen Satteln abspielt, welche in die fraktalen Einzugsgebietsgrenzen eingebettet sind. Er hat rauschinduziertes Chaos zur Folge. Bei der Untersuchung der dissipativen Standardabbildung wurde das Phaenomen der Praeferenz von Attraktoren durch die Wirkung des Rauschens gefunden. Dies bedeutet, dass einige Attraktoren eine groessere Wahrscheinlichkeit erhalten aufzutreten, als dies fuer das rauschfreie System der Fall waere. Bei einer bestimmten Rauschstaerke ist diese Bevorzugung maximal. Andere Attraktoren werden aufgrund des Rauschens weniger oft angelaufen. Bei einer entsprechend hohen Rauschstaerke werden sie komplett ausgeloescht. Die Komplexitaet des Sprungprozesses wird fuer das Modell zweier gekoppelter logistischer Abbildungen mit symbolischer Dynamik untersucht. Bei Variation eines Parameters steigt an einem bestimmten Wert des Parameters die topologische Entropie steil an, die neben der Shannon Entropie als Komplexitaetsmass verwendet wird. Dieser Anstieg wird auf eine neuartige Bifurkation von chaotischen Satteln zurueckgefuehrt, die in einem Verschmelzen zweier Sattel besteht und durch einen "Snap-back"-Repellor vermittelt wird. Skalierungsgesetze sowohl der Verweilzeit auf einem der zuvor getrennten Teile des Sattels als auch des Wachsens der fraktalen Dimension des entstandenen Sattels beschreiben diese neuartige Bifurkation genauer. Wenn ein chaotischer Sattel eingebettet in der offenen Umgebung eines Einzugsgebietes eines metastabilen Zustandes liegt, fuehrt das zu einer deutlichen Senkung der Schwelle des rauschinduzierten Tunnelns. Dies wird anhand der Ikeda-Abbildung, die ein Lasersystem mit einer zeitverzoegerden Interferenz beschreibt, demonstriert. Dieses Resultat wird unter Verwendung der Theorie der Quasipotentiale erzielt. Sowohl dieser Effekt, die Senkung der Schwelle f{\"u}r rauschinduziertes Tunneln aus einem metastabilen Zustand durch einen chaotischen Sattel, als auch die beiden Skalierungsgesteze sind von experimenteller Relevanz.}, language = {en} } @phdthesis{Muench2018, author = {M{\"u}nch, Thomas}, title = {Interpretation of temperature signals from ice cores}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-414963}, school = {Universit{\"a}t Potsdam}, pages = {xxi, 197}, year = {2018}, abstract = {Earth's climate varies continuously across space and time, but humankind has witnessed only a small snapshot of its entire history, and instrumentally documented it for a mere 200 years. Our knowledge of past climate changes is therefore almost exclusively based on indirect proxy data, i.e. on indicators which are sensitive to changes in climatic variables and stored in environmental archives. Extracting the data from these archives allows retrieval of the information from earlier times. Obtaining accurate proxy information is a key means to test model predictions of the past climate, and only after such validation can the models be used to reliably forecast future changes in our warming world. The polar ice sheets of Greenland and Antarctica are one major climate archive, which record information about local air temperatures by means of the isotopic composition of the water molecules embedded in the ice. However, this temperature proxy is, as any indirect climate data, not a perfect recorder of past climatic variations. Apart from local air temperatures, a multitude of other processes affect the mean and variability of the isotopic data, which hinders their direct interpretation in terms of climate variations. This applies especially to regions with little annual accumulation of snow, such as the Antarctic Plateau. While these areas in principle allow for the extraction of isotope records reaching far back in time, a strong corruption of the temperature signal originally encoded in the isotopic data of the snow is expected. This dissertation uses observational isotope data from Antarctica, focussing especially on the East Antarctic low-accumulation area around the Kohnen Station ice-core drilling site, together with statistical and physical methods, to improve our understanding of the spatial and temporal isotope variability across different scales, and thus to enhance the applicability of the proxy for estimating past temperature variability. The presented results lead to a quantitative explanation of the local-scale (1-500 m) spatial variability in the form of a statistical noise model, and reveal the main source of the temporal variability to be the mixture of a climatic seasonal cycle in temperature and the effect of diffusional smoothing acting on temporally uncorrelated noise. These findings put significant limits on the representativity of single isotope records in terms of local air temperature, and impact the interpretation of apparent cyclicalities in the records. Furthermore, to extend the analyses to larger scales, the timescale-dependency of observed Holocene isotope variability is studied. This offers a deeper understanding of the nature of the variations, and is crucial for unravelling the embedded true temperature variability over a wide range of timescales.}, language = {en} } @phdthesis{Ullner2004, author = {Ullner, Ekkehard}, title = {Noise-induced phenomena of signal transmission in excitable neural models}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0001522}, school = {Universit{\"a}t Potsdam}, year = {2004}, abstract = {Meine Dissertation behandelt verschiedene neue rauschinduzierte Ph{\"a}nomene in anregbaren Neuronenmodellen, insbesondere solche mit FitzHugh-Nagumo Dynamik. Ich beschreibe das Auftreten von vibronischer Resonanz in anregbaren Systemen. Sowohl in einer anregbaren elektronischen Schaltung als auch im FitzHugh-Nagumo Modell zeige ich, daß eine optimale Amplitude einer hochfrequenten externen Kraft die Signalantwort bez{\"u}glich eines niederfrequenten Signals verbessert. Weiterhin wird der Einfluß von additivem Rauschen auf das Zusammenwirken von stochastischer und vibronischer Resonanz untersucht. Weiterhin untersuche ich Systeme, die sowohl oszillierende als auch anregbare Eigenschaften beinhalten und dadurch zwei interne Frequenzen aufweisen. Ich zeige, daß in solchen Systemen der Effekt der stochastischen Resonanz deutlich erh{\"o}ht werden kann, wenn eine zus{\"a}tzliche hochfrequente Kraft in Resonanz mit den kleinen Oszillationen unterhalb der Anregungsschwelle hinzugenommen wird. Es ist beachtenswert, daß diese Verst{\"a}rkung der stochastischen Resonanz eine geringere Rauschintensit{\"a}t zum Erreichen des Optimums ben{\"o}tigt als die standartm{\"a}ßige stochastische Resonanz in anregbaren Systemen. Ich untersuche Frequenzselektivit{\"a}t bei der rauschinduzierten Signalverarbeitung von Signalen unterhalb der Anregungsschwelle in Systemen mit vielen rauschunterst{\"u}tzten stochastischen Attraktoren. Diese neuen Attraktoren mit abweichenden gemittelten Perioden weisen auch unterschiedliche Phasenbeziehungen zwischen den einzelnen Elementen auf. Ich zeige, daß die Signalantwort des gekoppelten Systems unter verschiedenen Rauscheinwirkungen deutlich verbessert oder auch reduziert werden kann durch das Treiben einzelner Elemente in Resonanz mit diesen neuen Resonanzfrequenzen, die mit passenden Phasenbeziehungen korrespondieren. Weiterhin konnte ich einen rauschinduzierten Phasen{\"u}bergang von einem selbstoszillierenden System zu einem anregbaren System nachweisen. Dieser {\"U}bergang erfolgt durch eine rauschinduzierte Stabilisierung eines deterministisch instabilen Fixpunktes der lokalen Dynamik, w{\"a}hrend die gesamte Phasenraumstruktur des Systems erhalten bleibt. Die gemeinsame Wirkung von Kopplung und Rauschen f{\"u}hrt zu einem neuen Typ von Phasen{\"u}berg{\"a}ngen und bewirkt eine Stabilisierung des Systems. Das sich daraus ergebende rauschinduziert anregbare Regime zeigt charakteristische Eigenschaften von klassisch anregbaren Systemen, wie stochastische Resonanz und Wellenausbreitung. Dieser rauschinduzierte Phasen{\"u}bergang erm{\"o}glicht dadurch die {\"U}bertragung von Signalen durch ansonsten global oszillierende Systeme und die Kontrolle der Signal{\"u}bertragung durch Ver{\"a}nderung der Rauschintensit{\"a}t. Insbesondere er{\"o}ffnen diese theoretischen Ergebnisse einen m{\"o}glichen Mechanismus zur Unterdr{\"u}ckung unerw{\"u}nschter globaler Oszillationen in neuronalen Netzwerken, welche charakteristisch f{\"u}r abnorme medizinische Zust{\"a}nde, wie z.B. bei der Parkinson\′schen Krankheit oder Epilepsie, sind. Die Wirkung von Rauschen w{\"u}rde dann wieder die Anregbarkeit herstellen, die den normalen Zustand der erkrankten Neuronen darstellt.}, language = {en} }