@phdthesis{Jiang2011, author = {Jiang, Yuan}, title = {Precursor phases in non-classical crystallization}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-52460}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {The main objective of this thesis is to understand molecular crystallization as a multistep process with or without polymeric additives, including transient liquid-liquid phase separation, nanocrystal nucleation within the dense phase, and subsequent nanocrystal self-assembly or self-organization in sequence. The thesis starts with a quaternary model system, containing DL-Glutamic acid (Glu), polyethyleneimine (PEI), water, and EtOH, for the understanding of multistep precipitation of Glu with PEI as an additive. The experiments were performed by mixing Glu-PEI aqueous solution with a non-solvent EtOH. First, the phase diagram of the quaternary system is determined, obtaining precipitate, coacervates, or homogeneous mixtures by varying Glu/PEI w/w and water/EtOH v/v. Coacervation is observed to occur over a wide range of Glu/PEI with various volumes. The composition of coacervates is conveniently characterized by nuclear magnetic resonance spectroscopy. The observed coacervates are thermodynamically stable phases rich in solute, which is different from metastable polymer-induced liquid precursors. The combination of atomic force microscopy, small angle scattering, and ξ-potential measurements confirms the coexistence of monomers and Glu/PEI complexes and the aggregation of complexes in Glu-PEI-water systems. This suggests that there might be a direct structural transformation between the Glu-PEI complexes in aqueous solution and the metastable liquid precursors in a water-EtOH mixture. The multistep mechanism of Glu precipitation with PEI as an additive is investigated thereafter. The combination of stopped flow and small angle scattering demonstrates that the initially formed liquid precursors pass through an alteration of growth and coalescence. Combined with results from optical microscopy and scanning electron microscopy, the nucleation of nanoplatelets happens within each liquid precursor droplet, and nanoplatelets reorient themselves and self-organize into a radial orientation in the crystalline microspheres. The recipe was then extended to the precipitation of organics in other oppositely charged amino acid-polyelectrolyte systems. After the success in preparing hierarchical microspheres in solution, the similar recipe can be extended to the preparation of patterned thin films on substrate. By dipping a quaternary DL-Lys·HCl (Lys)-polyacrylic acid (PAA)-water-EtOH dispersion on a hydrophilic slide, the fast evaporation process of the volatile solvent EtOH is responsible for the homogeneous nucleation of NPs. Then, the following complete evaporation causes the mesocrystallization of a continuous spherulitic thin film along the receding line of the liquid, which again transforms into a mesocrystalline thin film. Furthermore, annealing is used to optimize the property of mesocrystalline thin films. As evaporation is a non-equilibrium process, it can be used to tune the kinetics of crystallization. Therefore, hierarchical or periodical thin films are obtainable by starting the evaporation from microspheres recrystallization, obtaining mesocrystalline thin films with 4 hierarchy levels. The results reveal that evaporation provides an easy but effective way for the formation of patterned structures via the positioning of NPs after their fast nucleation, resulting in different kinds of patterns by controlling the concentration of NPs, solvent evaporation rate, and other physical forces. Non-classical crystallization is not limited to crystallizations with polymeric additives. We also observed the nucleation and growth of a new molecular layer on the growing DL-Glu·H2O crystals from a supersaturated mother liquor by using an in-situ atomic force microscopy (AFM), where the nucleation and growth of a molecular layer proceed via amorphous nanoparticle (NP) attachment and relaxation process before the observation of the growth of a newly formed molecular layer. NP attachment to the crystal surface is too fast to observe by using in-situ AFM. The height shrinkage of NPs, combined to the structural transformation from 3D amorphous NPs to 2D crystalline layer, is observed during the relaxation process. The nucleation and growth of a newly formed molecular layer from NP relaxation is contradictory to the classical nucleation theory, which hypothesizes that nuclei show the same crystallographic properties as a bulk crystal. The formation of a molecular layer by NP attachment and relaxation rather than attachment of single molecules provides a different picture from the currently held classical nucleation and growth theory regarding the growth of single crystals from solution.}, language = {de} }