@unpublished{PrenovTarkhanov2001, author = {Prenov, B. and Tarkhanov, Nikolai Nikolaevich}, title = {Kernel spikes of singular problems}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26195}, year = {2001}, abstract = {Function spaces with asymptotics is a usual tool in the analysis on manifolds with singularities. The asymptotics are singular ingredients of the kernels of pseudodifferential operators in the calculus. They correspond to potentials supported by the singularities of the manifold, and in this form asymptotics can be treated already on smooth configurations. This paper is aimed at describing refined asymptotics in the Dirichlet problem in a ball. The beauty of explicit formulas highlights the structure of asymptotic expansions in the calculi on singular varieties.}, language = {en} } @unpublished{ShlapunovTarkhanov2001, author = {Shlapunov, Alexander and Tarkhanov, Nikolai Nikolaevich}, title = {Duality by reproducing kernels}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26095}, year = {2001}, abstract = {Let A be a determined or overdetermined elliptic differential operator on a smooth compact manifold X. Write Ssub(A)(D) for the space of solutions to thesystem Au = 0 in a domain D ⊂ X. Using reproducing kernels related to various Hilbert structures on subspaces of Ssub(A)(D) we show explicit identifications of the dual spaces. To prove the "regularity" of reproducing kernels up to the boundary of D we specify them as resolution operators of abstract Neumann problems. The matter thus reduces to a regularity theorem for the Neumann problem, a well-known example being the ∂-Neumann problem. The duality itself takes place only for those domains D which possess certain convexity properties with respect to A.}, language = {en} } @unpublished{KytmanovMyslivetsSchulzeetal.2001, author = {Kytmanov, Aleksandr and Myslivets, Simona and Schulze, Bert-Wolfgang and Tarkhanov, Nikolai Nikolaevich}, title = {Elliptic problems for the Dolbeault complex}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25979}, year = {2001}, abstract = {The inhomogeneous ∂-equations is an inexhaustible source of locally unsolvable equations, subelliptic estimates and other phenomena in partial differential equations. Loosely speaking, for the anaysis on complex manifolds with boundary nonelliptic problems are typical rather than elliptic ones. Using explicit integral representations we assign a Fredholm complex to the Dolbeault complex over an arbitrary bounded domain in C up(n).}, language = {en} }