@article{NiskanenFondellSahleetal.2019, author = {Niskanen, Johannes and Fondell, Mattis and Sahle, Christoph J. and Eckert, Sebastian and Jay, Raphael Martin and Gilmore, Keith and Pietzsch, Annette and Dantz, Marcus and Lu, Xingye and McNally, Daniel E. and Schmitt, Thorsten and Vaz da Cruz, Vinicius and Kimberg, Victor and F{\"o}hlisch, Alexander and Gel'mukhanov, Faris}, title = {Compatibility of quantitative X-ray spectroscopy with continuous distribution models of water at ambient conditions}, series = {Proceedings of the National Academy of Sciences of the United States of America}, volume = {116}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, number = {10}, publisher = {National Acad. of Sciences}, address = {Washington}, issn = {0027-8424}, doi = {10.1073/pnas.1815701116}, pages = {4058 -- 4063}, year = {2019}, abstract = {The phase diagram of water harbors controversial views on underlying structural properties of its constituting molecular moieties, its fluctuating hydrogen-bonding network, as well as pair-correlation functions. In this work, long energy-range detection of the X-ray absorption allows us to unambiguously calibrate the spectra for water gas, liquid, and ice by the experimental atomic ionization cross-section. In liquid water, we extract the mean value of 1.74 +/- 2.1\% donated and accepted hydrogen bonds per molecule, pointing to a continuous-distribution model. In addition, resonant inelastic X-ray scattering with unprecedented energy resolution also supports continuous distribution of molecular neighborhoods within liquid water, as do X-ray emission spectra once the femtosecond scattering duration and proton dynamics in resonant X-ray-matter interaction are taken into account. Thus, X-ray spectra of liquid water in ambient conditions can be understood without a two-structure model, whereas the occurrence of nanoscale-length correlations within the continuous distribution remains open.}, language = {en} } @article{JayEckertVazdaCruzetal.2019, author = {Jay, Raphael Martin and Eckert, Sebastian and Vaz da Cruz, Vinicius and Fondell, Mattis and Mitzner, Rolf and F{\"o}hlisch, Alexander}, title = {Covalency-driven preservation of local charge densities in a metal-to-ligand charge-transfer excited iron photosensitizer}, series = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, volume = {58}, journal = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, number = {31}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1433-7851}, doi = {10.1002/anie.201904761}, pages = {10742 -- 10746}, year = {2019}, abstract = {Charge-density rearrangements after metal-to-ligand charge-transfer excitation in an iron photosensitizer are investigated by R. M Jay, A. Fohlisch et al. in their Communication (DOI: 10.1002/anie.201904761). By using time-resolved X-ray absorption spectroscopy, surprising covalency-effects are revealed that inhibit charge-separation at the intra-molecular level. Furthermore, the underlying mechanism is proposed to be generally in effect for all commonly used photosensitizers in light-harvesting applications, which challenges the common perception of electronic charge-transfer.}, language = {en} } @article{KuehnMuellerSorgenfreietal.2019, author = {K{\"u}hn, Danilo and M{\"u}ller, Moritz and Sorgenfrei, Florian and Giangrisostomi, Erika and Jay, Raphael Martin and Ovsyannikov, Ruslan and Martensson, Nils and Sanchez-Portal, Daniel and F{\"o}hlisch, Alexander}, title = {Directional sub-femtosecond charge transfer dynamics and the dimensionality of 1T-TaS2}, series = {Scientific reports}, volume = {9}, journal = {Scientific reports}, number = {488}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-018-36637-0}, pages = {9}, year = {2019}, abstract = {For the layered transition metal dichalcogenide 1T-TaS2, we establish through a unique experimental approach and density functional theory, how ultrafast charge transfer in 1T-TaS2 takes on isotropic three-dimensional character or anisotropic two-dimensional character, depending on the commensurability of the charge density wave phases of 1T-TaS2. The X-ray spectroscopic core-hole-clock method prepares selectively in-and out-of-plane polarized sulfur 3p orbital occupation with respect to the 1T-TaS2 planes and monitors sub-femtosecond wave packet delocalization. Despite being a prototypical two-dimensional material, isotropic three-dimensional charge transfer is found in the commensurate charge density wave phase (CCDW), indicating strong coupling between layers. In contrast, anisotropic two-dimensional charge transfer occurs for the nearly commensurate phase (NCDW). In direct comparison, theory shows that interlayer interaction in the CCDW phase - not layer stacking variations - causes isotropic three-dimensional charge transfer. This is presumably a general mechanism for phase transitions and tailored properties of dichalcogenides with charge density waves.}, language = {en} } @article{VazdaCruzIgnatovaCoutoetal.2019, author = {Vaz da Cruz, Vin{\´i}cius and Ignatova, Nina and Couto, Rafael and Fedotov, Daniil and Rehn, Dirk R. and Savchenko, Viktoriia and Norman, Patrick and {\AA}gren, Hans and Polyutov, Sergey and Niskanen, Johannes and Eckert, Sebastian and Jay, Raphael Martin and Fondell, Mattis and Schmitt, Thorsten and Pietzsch, Annette and F{\"o}hlisch, Alexander and Odelius, Michael and Kimberg, Victor and Gel'mukhanov, Faris}, title = {Nuclear dynamics in resonant inelastic X-ray scattering and X-ray absorption of methanol}, series = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, volume = {150}, journal = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, number = {23}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-9606}, doi = {10.1063/1.5092174}, pages = {20}, year = {2019}, abstract = {We report on a combined theoretical and experimental study of core-excitation spectra of gas and liquid phase methanol as obtained with the use of X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS). The electronic transitions are studied with computational methods that include strict and extended second-order algebraic diagrammatic construction [ADC(2) and ADC(2)-x], restricted active space second-order perturbation theory, and time-dependent density functional theory-providing a complete assignment of the near oxygen K-edge XAS. We show that multimode nuclear dynamics is of crucial importance for explaining the available experimental XAS and RIXS spectra. The multimode nuclear motion was considered in a recently developed "mixed representation" where dissociative states and highly excited vibrational modes are accurately treated with a time-dependent wave packet technique, while the remaining active vibrational modes are described using Franck-Condon amplitudes. Particular attention is paid to the polarization dependence of RIXS and the effects of the isotopic substitution on the RIXS profile in the case of dissociative core-excited states. Our approach predicts the splitting of the 2a RIXS peak to be due to an interplay between molecular and pseudo-atomic features arising in the course of transitions between dissociative core- and valence-excited states. The dynamical nature of the splitting of the 2a peak in RIXS of liquid methanol near pre-edge core excitation is shown. The theoretical results are in good agreement with our liquid phase measurements and gas phase experimental data available from the literature. (C) 2019 Author(s).}, language = {en} } @article{VazdaCruzEckertIannuzzietal.2019, author = {Vaz da Cruz, Vinicius and Eckert, Sebastian and Iannuzzi, Marcella and Ertan, Emelie and Pietzsch, Annette and Couto, Rafael C. and Niskanen, Johannes and Fondell, Mattis and Dantz, Marcus and Schmitt, Thorsten and Lu, Xingye and McNally, Daniel and Jay, Raphael Martin and Kimberg, Victor and F{\"o}hlisch, Alexander and Odelius, Michael}, title = {Probing hydrogen bond strength in liquid water by resonant inelastic X-ray scattering}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-019-08979-4}, pages = {9}, year = {2019}, abstract = {Local probes of the electronic ground state are essential for understanding hydrogen bonding in aqueous environments. When tuned to the dissociative core-excited state at the O1s pre-edge of water, resonant inelastic X-ray scattering back to the electronic ground state exhibits a long vibrational progression due to ultrafast nuclear dynamics. We show how the coherent evolution of the OH bonds around the core-excited oxygen provides access to high vibrational levels in liquid water. The OH bonds stretch into the long-range part of the potential energy curve, which makes the X-ray probe more sensitive than infra-red spectroscopy to the local environment. We exploit this property to effectively probe hydrogen bond strength via the distribution of intramolecular OH potentials derived from measurements. In contrast, the dynamical splitting in the spectral feature of the lowest valence-excited state arises from the short-range part of the OH potential curve and is rather insensitive to hydrogen bonding.}, language = {en} } @article{EckertNorellJayetal.2019, author = {Eckert, Sebastian and Norell, Jesper and Jay, Raphael Martin and Fondell, Mattis and Mitzner, Rolf and Odelius, Michael and F{\"o}hlisch, Alexander}, title = {T-1 Population as the Driver of Excited-State Proton-Transfer in 2-Thiopyridone}, series = {Chemistry - a European journal}, volume = {25}, journal = {Chemistry - a European journal}, number = {7}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0947-6539}, doi = {10.1002/chem.201804166}, pages = {1733 -- 1739}, year = {2019}, abstract = {Excited-state proton transfer (ESPT) is a fundamental process in biomolecular photochemistry, but its underlying mediators often evade direct observation. We identify a distinct pathway for ESPT in aqueous 2-thiopyridone, by employing transient N1s X-ray absorption spectroscopy and multi-configurational spectrum simulations. Photoexcitations to the singlet S-2 and S-4 states both relax promptly through intersystem crossing to the triplet T-1 state. The T-1 state, through its rapid population and near nanosecond lifetime, mediates nitrogen site deprotonation by ESPT in a secondary intersystem crossing to the S-0 potential energy surface. This conclusively establishes a dominant ESPT pathway for the system in aqueous solution, which is also compatible with previous measurements in acetonitrile. Thereby, the hitherto open questions of the pathway for ESPT in the compound, including its possible dependence on excitation wavelength and choice of solvent, are resolved.}, language = {en} } @article{KuehnGiangrisostomiJayetal.2019, author = {K{\"u}hn, Danilo and Giangrisostomi, Erika and Jay, Raphael Martin and Sorgenfrei, Florian and F{\"o}hlisch, Alexander}, title = {The influence of x-ray pulse length on space-charge effects in optical pump/x-ray probe photoemission}, series = {New journal of physics : the open-access journal for physics}, volume = {21}, journal = {New journal of physics : the open-access journal for physics}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1367-2630}, doi = {10.1088/1367-2630/ab2f5c}, pages = {12}, year = {2019}, abstract = {Pump-probe photoelectron spectroscopy (PES) is a versatile tool to investigate the dynamics of transient states of excited matter. Vacuum space-charge effects can mask these dynamics and complicate the interpretation of electron spectra. Here we report on space-charge effects in Au 4f photoemission from a polycrystalline gold surface, excited with moderately intense 90 ps (FWHM) soft x-ray probe pulses, under the influence of the Coulomb forces exerted by a pump electron cloud, which was produced by intense 40 fs laser pulses. The experimentally observed kinetic energy shift and spectral broadening of the Au 4f lines, measured with highly-efficient time-of-flight spectroscopy, are in good agreement with simulations utilizing a mean-field model of the electrostatic pump electron potential. This confirms that the line broadening is predominantly caused by variations in the take-off time of the probe electrons without appreciable influence of local scattering events. Our findings might be of general interest for pump-probe PES with picosecond-pulse-length sources.}, language = {en} }