@article{GrothLendlein2004, author = {Groth, Thomas and Lendlein, Andreas}, title = {In-vivo-Reparatur von Blutgef{\"a}ßen durch alternierende Adsorption von Polyelektrolyten}, year = {2004}, language = {de} } @article{GrothLendlein2004, author = {Groth, Thomas and Lendlein, Andreas}, title = {Layer-by-layer deposition of polyelectrolytes : a versatile tool for the in vivo repair of blood vessels and the preparation of biocompatible implant coatings}, year = {2004}, language = {en} } @article{HeilmannGrothBehrsingetal.2005, author = {Heilmann, Katja and Groth, Thomas and Behrsing, Olaf and Wagner, Albrecht and Schossig-Tiedemann, Michael and Lendlein, Andreas and Micheel, Burkhard}, title = {The influence of the chemical composition of cell culture material on the growth and antibody production of hybridoma cells}, year = {2005}, abstract = {The multiplication and antibody production of murine hybridoma cells cultured on five different polymer membranes were tested and compared with conventional tissue culture polystyrene (TCPS). Membranes were prepared from polyacrylonitrile (PAN) and acrylonitrile copolymerized with N-vinylpyrrolidone (NVP20, NVP30), Na-methallylsulfonate (NaMAS) and N-(3-amino-propyl-methacrylamide-hydrochloride) (APMA). Cell number and antibody concentration were quantified as criteria for viability and productivity. Adhesion of hybridoma cells was characterized by vital and scanning electron microscopy. The results suggest that a strong adhesion of cells, observed on APMA and TCPS, increased cell growth but reduced monoclonal antibody production. In contrast membranes with lowered adhesivity such as NVP20 provided favourable conditions for monoclonal antibody production. In addition it was shown that this membrane also possessed a minor fouling as indicated by the low decrease of water flux across the membrane after protein adsorption. It was concluded that NVP20 could be a suitable material for the development of hollow fibre membranes for bioreactors.}, language = {en} } @article{HeilmannGrothSchossigetal.2007, author = {Heilmann, Katja and Groth, Thomas and Schossig, Michael and Lendlein, Andreas and Micheel, Burkhard}, title = {Modulation of hybridoma cell growth and antibody production by coating cell culture material with extracellular matrix proteins}, issn = {1369-703X}, doi = {10.1016/j.bej.2007.01.035}, year = {2007}, abstract = {The influence of coating polystyrene tissue culture plates with different proteins on murine hybridoma cell growth and antibody production was investigated. Fibronectin, collagen I, bovine serum albumin and laminin were used to coat NUNC and COSTAR cell culture plates. Cell number and antibody concentration in culture fluids were quantified as indicators for cell viability, proliferation and productivity. Adhesive behaviour, morphology, expression of surface receptors of hybridoma cells and the presence of tyrosine-phosphorylated proteins in cell lysates were characterized by cell adhesion experiments, microscopy, flow cytometry and Western Blot analysis. It was shown that coatings with fibronectin (0.2 ;g/ml) lead to a substantial improvement of cell growth by 50-70\% and an increase of monoclonal antibody production by 100-120\%. Collagen I coatings showed an improvement in cell growth by 30-70\% and by 60\% for the production of monoclonal antibodies. Coatings with BSA and laminin had minor effects on these parameters. It was found that the hybridoma cell lines used in this study did not express the ;2-chain of the ;2;1-integrin, which is responsible for binding to collagen and laminin. However, the presence of ;1- integrin on the cell surface was shown, which should enable hybridoma cells to bind fibronectin. We propose, therefore, that fibronectin adsorption to cell culture materials may be a promising approach to enhance the production of monoclonal antibodies by cultivated hybridoma cells.}, language = {en} }