@article{GholamrezaieScheckWenderothBottetal.2019, author = {Gholamrezaie, Ershad and Scheck-Wenderoth, Magdalena and Bott, Judith and Heidbach, Oliver and Strecker, Manfred}, title = {3-D crustal density model of the Sea of Marmara}, series = {Solid Earth}, volume = {10}, journal = {Solid Earth}, publisher = {Copernicus Publ.}, address = {G{\"o}ttingen}, issn = {1869-9510}, doi = {10.5194/se-10-785-2019}, pages = {785 -- 807}, year = {2019}, abstract = {Abstract. The Sea of Marmara, in northwestern Turkey, is a transition zone where the dextral North Anatolian Fault zone (NAFZ) propagates westward from the Anatolian Plate to the Aegean Sea Plate. The area is of interest in the context of seismic hazard of Istanbul, a metropolitan area with about 15 million inhabitants. Geophysical observations indicate that the crust is heterogeneous beneath the Marmara basin, but a detailed characterization of the crustal heterogeneities is still missing. To assess if and how crustal heterogeneities are related to the NAFZ segmentation below the Sea of Marmara, we develop new crustal-scale 3-D density models which integrate geological and seismological data and that are additionally constrained by 3-D gravity modeling. For the latter, we use two different gravity datasets including global satellite data and local marine gravity observation. Considering the two different datasets and the general non-uniqueness in potential field modeling, we suggest three possible "end-member" solutions that are all consistent with the observed gravity field and illustrate the spectrum of possible solutions. These models indicate that the observed gravitational anomalies originate from significant density heterogeneities within the crust. Two layers of sediments, one syn-kinematic and one pre-kinematic with respect to the Sea of Marmara formation are underlain by a heterogeneous crystalline crust. A felsic upper crystalline crust (average density of 2720 kgm⁻³) and an intermediate to mafic lower crystalline crust (average density of 2890 kgm⁻³) appear to be cross-cut by two large, dome-shaped mafic highdensity bodies (density of 2890 to 3150 kgm⁻³) of considerable thickness above a rather uniform lithospheric mantle (3300 kgm⁻³). The spatial correlation between two major bends of the main Marmara fault and the location of the highdensity bodies suggests that the distribution of lithological heterogeneities within the crust controls the rheological behavior along the NAFZ and, consequently, maybe influences fault segmentation and thus the seismic hazard assessment in the region.}, language = {en} } @article{IbarraLiuMeessenetal.2019, author = {Ibarra, Federico and Liu, Sibiao and Meeßen, Christian and Prezzi, Claudia Beatriz and Bott, Judith and Scheck-Wenderoth, Magdalena and Sobolev, Stephan Vladimir and Strecker, Manfred}, title = {3D data-derived lithospheric structure of the Central Andes and its implications for deformation: Insights from gravity and geodynamic modelling}, series = {Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth}, volume = {766}, journal = {Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0040-1951}, doi = {10.1016/j.tecto.2019.06.025}, pages = {453 -- 468}, year = {2019}, abstract = {We present a new three-dimensional density model of the Central Andes characterizing the structure and composition of the lithosphere together with a geodynamic simulation subjected to continental intraplate shortening. The principal aim of this study is to assess the link between heterogeneities in the lithosphere and different deformation patterns and styles along the orogen-foreland system of the Central Andes. First, we performed a 3D integration of new geological and geophysical data with previous models through forward modelling of Bouguer anomalies. Subsequently, a geodynamic model was set-up and parametrized from the previously obtained 3D structure and composition. We do not find a unambigous correlation between the resulting density configuration and terrane boundaries proposed by other authors. Our models reproduce the observed Bouguer anomaly and deformation patterns in the foreland. We find that thin-skinned deformation in the Subandean fold-and thrust belt is controlled by a thick sedimentary layer and coeval underthrusting of thin crust of the foreland beneath the thick crust of the Andean Plateau. In the adjacent thick-skinned deformation province of the inverted Cretaceous extensional Santa Barbara System sedimentary strata are much thinner and crustal thickness transitions from greater values in the Andean to a more reduced thickness in the foreland. Our results show that deformation processes occur where the highest gradients of lithospheric strength are present between the orogen and the foreland, thus suggesting a spatial correlation between deformation and lithospheric strength.}, language = {en} } @article{TeshebaevaEchtlerBookhagenetal.2019, author = {Teshebaeva, Kanayim and Echtler, Helmut and Bookhagen, Bodo and Strecker, Manfred}, title = {Deep-seated gravitational slope deformation (DSGSD) and slow-moving landslides in the southern Tien Shan Mountains: new insights from InSAR, tectonic and geomorphic analysis}, series = {Earth surface processes and landforms : the journal of the British Geomorphological Research Group}, volume = {44}, journal = {Earth surface processes and landforms : the journal of the British Geomorphological Research Group}, number = {12}, publisher = {Wiley}, address = {Hoboken}, issn = {0197-9337}, doi = {10.1002/esp.4648}, pages = {2333 -- 2348}, year = {2019}, abstract = {We investigated deep-seated gravitational slope deformation (DSGSD) and slow mass movements in the southern Tien Shan Mountains front using synthetic aperture radar (SAR) time-series data obtained by the ALOS/PALSAR satellite. DSGSD evolves with a variety of geomorphological changes (e.g. valley erosion, incision of slope drainage networks) over time that affect earth surfaces and, therefore, often remain unexplored. We analysed 118 interferograms generated from 20 SAR images that covered about 900 km(2). To understand the spatial pattern of the slope movements and to identify triggering parameters, we correlated surface dynamics with the tectono-geomorphic processes and lithologic conditions of the active front of the Alai Range. We observed spatially continuous, constant hillslope movements with a downslope speed of approximately 71 mm year(-1) velocity. Our findings suggest that the lithological and structural framework defined by protracted deformation was the main controlling factor for sustained relief and, consequently, downslope mass movements. The analysed structures revealed integration of a geological/structural setting with the superposition of Cretaceous-Paleogene alternating carbonatic and clastic sedimentary structures as the substratum for younger, less consolidated sediments. This type of structural setting causes the development of large-scale, gravity-driven DSGSD and slow mass movement. Surface deformations with clear scarps and multiple crest lines triggered planes for large-scale deep mass creeps, and these were related directly to active faults and folds in the geologic structures. Our study offers a new combination of InSAR techniques and structural field observations, along with morphometric and seismologic correlations, to identify and quantify slope instability phenomena along a tectonically active mountain front. These results contribute to an improved natural risk assessment in these structures.}, language = {en} } @article{MelnickHillemannJaraMunozetal.2019, author = {Melnick, Daniel and Hillemann, Christian and Jara Mu{\~n}oz, Julius and Garrett, Ed and Cortes-Aranda, Joaquin and Molina, Diego and Tassara, Andr{\´e}s and Strecker, Manfred}, title = {Hidden Holocene Slip Along the Coastal El Yolki Fault in Central Chile and Its Possible Link With Megathrust Earthquakes}, series = {Journal of geophysical research : Solid earth}, volume = {124}, journal = {Journal of geophysical research : Solid earth}, number = {7}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9313}, doi = {10.1029/2018JB017188}, pages = {7280 -- 7302}, year = {2019}, abstract = {Megathrust earthquakes are commonly accompanied by increased upper-plate seismicity and occasionally triggered fault slip. In Chile, crustal faults slipped during and after the 2010 Maule (M8.8) earthquake. We studied the El Yolki fault (EYOF), a transtensional structure midways the Maule rupture not triggered in 2010. We mapped a Holocene coastal plain using light detection and ranging, which did not reveal surface ruptures. However, the inner-edge and shoreline angles along the coastal plain as well as 4.3- to 4.0-ka intertidal sediments are back-tilted on the EYOF footwall block, documenting 10 m of vertical displacement. These deformed markers imply similar to 2-mm/year throw rate, and dislocation models a slip rate of 5.6 mm/year for the EYOF. In a 5-m-deep trench, the Holocene intertidal sediments onlap to five erosive steps, interpreted as staircase wave-cut landforms formed by discrete events of relative sea level drop. We tentatively associated these steps with coseismic uplift during EYOF earthquakes between 4.3 and 4.0 ka. The Maule earthquake rupture may be subdivided into three subsegments based on coseismic slip and gravity anomalies. Coulomb stress transfer models predict neutral stress changes at the EYOF during the Maule earthquake but positive changes for a synthetic slip distribution at the central subsegment. If EYOF earthquakes were triggered by megathrust events, their slip distribution was probably focused in the central subsegment. Our study highlights the millennial variability of crustal faulting and the megathrust earthquake cycle in Chile, with global implications for assessing the hazards posed by hidden but potentially seismogenic coastal faults along subduction zones.}, language = {en} } @article{GarciaHongnYagupskyetal.2019, author = {Garcia, Victor H. and Hongn, Fernando D. and Yagupsky, Daniel and Pingel, Heiko and Kinnaird, Timothy and Winocur, Diego and Cristallini, Ernesto and Robinson, Ruth Aj and Strecker, Manfred}, title = {Late Quaternary tectonics controlled by fault reactivation. Insights from a local transpressional system in the intermontane Lerma valley, Cordillera Oriental, NW Argentina}, series = {Journal of structural geology}, volume = {128}, journal = {Journal of structural geology}, publisher = {Elsevier}, address = {Oxford}, issn = {0191-8141}, doi = {10.1016/j.jsg.2019.103875}, pages = {17}, year = {2019}, abstract = {We analyzed the Lomas de Carabajal area in the intermontane Lerma valley of the Cordillera Oriental to assess the level of neotectonic activity in a densely populated region of northwestern Argentina. In this region, Plio-Pleistocene synorogenic conglomerates are deformed, locally associated with high-angle faults, and NNW-SSE oriented en-echelon folds characterized by wavelengths of < 1 km. The deformed Quaternary units follow the same pattern of deformation as observed in the underlying Neogene deposits; growth-strata geometries are observed near faults. This configuration is compatible with local left-lateral transpressional tectonism driven by ENE-WSW buttressing against the NW-oriented border of a Cretaceous extensional basin (Alemania sub-basin). Optically Stimulated Luminescence analysis of sandy-silty layers interbedded within the folded late Pleistocene conglomeratic sequence helps to determine uplift rates of 0.83-0.87 mm/a during the last 30-40 ka. Nearby the Lomas de Carabajal, a WNW-striking, 3-m-high fault scarp disrupts radiocarbon dated, 10-ka-old loessic deposits providing a Holocene mean uplift rate of 0.30 mm/a. Our data unambiguously show that shallow crustal deformation in the intermontane Lerma valley is ongoing; some of this deformation may be associated with seismicity. Our findings support the notion of temporally and spatially disparate deformation processes in the broken foreland of the northwestern Argentinean Andes.}, language = {en} } @article{PingelAlonsoAltenbergeretal.2019, author = {Pingel, Heiko and Alonso, Ricardo N. and Altenberger, Uwe and Cottle, John and Strecker, Manfred}, title = {Miocene to Quaternary basin evolution at the southeastern Andean Plateau (Puna) margin (ca. 24°S lat, Northwestern Argentina)}, series = {Basin research}, volume = {31}, journal = {Basin research}, number = {4}, publisher = {Wiley}, address = {Hoboken}, issn = {0950-091X}, doi = {10.1111/bre.12346}, pages = {808 -- 826}, year = {2019}, abstract = {The Andean Plateau of NW Argentina is a prominent example of a high-elevation orogenic plateau characterized by internal drainage, arid to hyper-arid climatic conditions and a compressional basin-and-range morphology comprising thick sedimentary basins. However, the development of the plateau as a geomorphic entity is not well understood. Enhanced orographic rainout along the eastern, windward plateau flank causes reduced fluvial run-off and thus subdued surface-process rates in the arid hinterland. Despite this, many Puna basins document a complex history of fluvial processes that have transformed the landscape from aggrading basins with coalescing alluvial fans to the formation of multiple fluvial terraces that are now abandoned. Here, we present data from the San Antonio de los Cobres (SAC) area, a sub-catchment of the Salinas Grandes Basin located on the eastern Puna Plateau bordering the externally drained Eastern Cordillera. Our data include: (a) new radiometric U-Pb zircon data from intercalated volcanic ash layers and detrital zircons from sedimentary key horizons; (b) sedimentary and geochemical provenance indicators; (c) river profile analysis; and (d) palaeo-landscape reconstruction to assess aggradation, incision and basin connectivity. Our results suggest that the eastern Puna margin evolved from a structurally controlled intermontane basin during the Middle Miocene, similar to intermontane basins in the Mio-Pliocene Eastern Cordillera and the broken Andean foreland. Our refined basin stratigraphy implies that sedimentation continued during the Late Mio-Pliocene and the Quaternary, after which the SAC area was subjected to basin incision and excavation of the sedimentary fill. Because this incision is unrelated to baselevel changes and tectonic processes, and is similar in timing to the onset of basin fill and excavation cycles of intermontane basins in the adjacent Eastern Cordillera, we suspect a regional climatic driver, triggered by the Mid-Pleistocene Climate Transition, caused the present-day morphology. Our observations suggest that lateral orogenic growth, aridification of orogenic interiors, and protracted plateau sedimentation are all part of a complex process chain necessary to establish and maintain geomorphic characteristics of orogenic plateaus in tectonically active mountain belts.}, language = {en} } @article{PingelSchildgenStreckeretal.2019, author = {Pingel, Heiko and Schildgen, Taylor F. and Strecker, Manfred and Wittmann, Hella}, title = {Pliocene-Pleistocene orographic control on denudation in northwest Argentina}, series = {Geology}, volume = {47}, journal = {Geology}, number = {4}, publisher = {American Institute of Physics}, address = {Boulder}, issn = {0091-7613}, doi = {10.1130/G45800.1}, pages = {359 -- 362}, year = {2019}, abstract = {The intermontane Humahuaca Basin in the Eastern Cordillera of the northwest Argentine Andes lies leeward of an orographic barrier to easterly derived moisture. An average of >2000 mm/yr of rainfall along the eastern flanks of the barrier contrasts with <200 mm/yr in the orogen interior. Paleoenvironmental reconstructions suggest that the basin became disconnected from the foreland during the Miocene-Pliocene by the growth of fault-bounded mountain ranges. Fossil records, sedimentology, and stable isotope data imply that rerouting of the fluvial network by 4.2 Ma and reduced rainfall by ca. 3 Ma were consequences of that range uplift. Here, we present cosmogenic nuclide-derived (Be-10) paleodenudation rates from 6 to 2 Ma fluvial deposits collected from the Humahuaca Basin. Despite increased tectonic activity, our Be-10 data show a tenfold decrease in denudation rates at ca. 3 Ma, documenting a link between uplift-induced semiarid conditions and decreasing hillslope denudation rates. This new data set thus demonstrates the influence of hydrological change on spatiotemporal denudation patterns in tectonically active mountain areas.}, language = {en} } @article{BallatoBruneStrecker2019, author = {Ballato, Paolo and Brune, Sascha and Strecker, Manfred}, title = {Sedimentary loading-unloading cycles and faulting in intermontane basins}, series = {Earth \& planetary science letters}, volume = {506}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2018.10.043}, pages = {388 -- 396}, year = {2019}, abstract = {The removal, redistribution, and transient storage of sediments in tectonically active mountain belts is thought to exert a first-order control on shallow crustal stresses, fault activity, and hence on the spatiotemporal pattern of regional deformation processes. Accordingly, sediment loading and unloading cycles in intermontane sedimentary basins may inhibit or promote intrabasinal faulting, respectively, but unambiguous evidence for this potential link has been elusive so far. Here we combine 2D numerical experiments that simulate contractional deformation in a broken-foreland setting (i.e., a foreland where shortening is diachronously absorbed by spatially disparate, reverse faults uplifting basement blocks) with field data from intermontane basins in the NW Argentine Andes. Our modeling results suggest that thicker sedimentary fills (>0.7-1.0 km) may suppress basinal faulting processes, while thinner fills (<0.7 km) tend to delay faulting. Conversely, the removal of sedimentary loads via fluvial incision and basin excavation promotes renewed intrabasinal faulting. These results help to better understand the tectono-sedimentary history of intermontane basins that straddle the eastern border of the Andean Plateau in northwestern Argentina. For example, the Santa Maria and the Humahuaca basins record intrabasinal deformation during or after sediment unloading, while the Quebrada del Toro Basin reflects the suppression of intrabasinal faulting due to loading by coarse conglomerates. We conclude that sedimentary loading and unloading cycles may exert a fundamental control on spatiotemporal deformation patterns in intermontane basins of tectonically active broken forelands. (C) 2018 Elsevier B.V. All rights reserved.}, language = {en} } @article{JaraMunozMelnickPedojaetal.2019, author = {Jara Mu{\~n}oz, Julius and Melnick, Daniel and Pedoja, Kevin and Strecker, Manfred}, title = {TerraceM-2: A MatlabR (R) Interface for Mapping and Modeling Marine and Lacustrine Terraces}, series = {Frontiers in Earth Science}, volume = {7}, journal = {Frontiers in Earth Science}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {2296-6463}, doi = {10.3389/feart.2019.00255}, pages = {18}, year = {2019}, abstract = {The morphology of marine and lacustrine terraces has been largely used to measure past sea- and lake-level positions and estimate vertical deformation in a wealth of studies focused on climate and tectonic processes. To obtain accurate morphometric assessments of terrace morphology we present TerraceM-2, an improved version of our MatlabR (R) graphic-user interface that provides new methodologies for morphometric analyses as well as landscape evolution and fault-dislocation modeling. The new version includes novel routines to map the elevation and spatial distribution of terraces, to model their formation and evolution, and to estimate fault-slip rates from terrace deformation patterns. TerraceM-2 has significantly improves its processing speed and mapping capabilities, and includes separate functions for developing customized workflows beyond the graphic-user interface. We illustrate these new mapping and modeling capabilities with three examples: mapping lacustrine shorelines in the Dead Sea to estimate deformation across the Dead Sea Fault, landscape evolution modeling to estimate a history of uplift rates in southern Peru, and dislocation modeling of deformed marine terraces in California. These examples also illustrate the need to use topographic data of different resolutions. The new modeling and mapping routines of TerraceM-2 highlight the advantages of an integrated joint mapping and modeling approach to improve the efficiency and precision of coastal terrace metrics in both marine and lacustrine environments.}, language = {en} }