@article{EberliBernoulliVecseietal.2019, author = {Eberli, Gregor P. and Bernoulli, Daniel and Vecsei, Adam and Sekti, Rizky and Grasmueck, Mark and L{\"u}dmann, Thomas and Anselmetti, Flavio S. and Mutti, Maria and Della Porta, Giovanna}, title = {A Cretaceous carbonate delta drift in the Montagna della Maiella, Italy}, series = {Sedimentology : the journal of the International Association of Sedimentologists}, volume = {66}, journal = {Sedimentology : the journal of the International Association of Sedimentologists}, number = {4}, publisher = {Wiley}, address = {Hoboken}, issn = {0037-0746}, doi = {10.1111/sed.12590}, pages = {1266 -- 1301}, year = {2019}, abstract = {The Upper Cretaceous (Campanian-Maastrichtian) bioclastic wedge of the Orfento Formation in the Montagna della Maiella, Italy, is compared to newly discovered contourite drifts in the Maldives. Like the drift deposits in the Maldives, the Orfento Formation fills a channel and builds a Miocene delta-shaped and mounded sedimentary body in the basin that is similar in size to the approximately 350 km(2) large coarse-grained bioclastic Miocene delta drifts in the Maldives. The composition of the bioclastic wedge of the Orfento Formation is also exclusively bioclastic debris sourced from the shallow-water areas and reworked clasts of the Orfento Formation itself. In the near mud-free succession, age-diagnostic fossils are sparse. The depositional textures vary from wackestone to float-rudstone and breccia/conglomerates, but rocks with grainstone and rudstone textures are the most common facies. In the channel, lensoid convex-upward breccias, cross-cutting channelized beds and thick grainstone lobes with abundant scours indicate alternating erosion and deposition from a high-energy current. In the basin, the mounded sedimentary body contains lobes with a divergent progradational geometry. The lobes are built by decametre thick composite megabeds consisting of sigmoidal clinoforms that typically have a channelized topset, a grainy foreset and a fine-grained bottomset with abundant irregular angular clasts. Up to 30 m thick channels filled with intraformational breccias and coarse grainstones pinch out downslope between the megabeds. In the distal portion of the wedge, stacked grainstone beds with foresets and reworked intraclasts document continuous sediment reworking and migration. The bioclastic wedge of the Orfento Formation has been variously interpreted as a succession of sea-level controlled slope deposits, a shoaling shoreface complex, or a carbonate tidal delta. Current-controlled delta drifts in the Maldives, however, offer a new interpretation because of their similarity in architecture and composition. These similarities include: (i) a feeder channel opening into the basin; (ii) an excavation moat at the exit of the channel; (iii) an overall mounded geometry with an apex that is in shallower water depth than the source channel; (iv) progradation of stacked lobes; (v) channels that pinch out in a basinward direction; and (vi) smaller channelized intervals that are arranged in a radial pattern. As a result, the Upper Cretaceous (Campanian-Maastrichtian) bioclastic wedge of the Orfento Formation in the Montagna della Maiella, Italy, is here interpreted as a carbonate delta drift.}, language = {en} } @article{TomasAurellBadenasetal.2019, author = {Tom{\´a}s, Sara and Aurell, Marcos and Badenas, Beatriz and Bjorge, Merle and Duaso, Maria and Mutti, Maria}, title = {Architecture and Paleoenvironment of Mid-Jurassic Microbial-Siliceous Sponge Mounds, Northeastern Spain}, series = {Journal of sedimentary research}, volume = {89}, journal = {Journal of sedimentary research}, number = {2}, publisher = {Society for Sedimentary Geology}, address = {Tulsa}, issn = {1527-1404}, doi = {10.2110/jsr.2019.5}, pages = {110 -- 134}, year = {2019}, abstract = {The occurrence of mounds dominated by siliceous sponges and microbialites is often related to distal, deep settings of middle ramps and shelves. This paper presents evidence for Bajocian (Garanliana garantiana Zone) microbial-siliceous sponge mounds formed in open marine but relatively shallow settings of a ramp from the Iberian Basin of eastern Spain. Marked differences in mound spacing, morphology, and composition of the related intermound facies are observed from distal to more proximal settings. The distal (below storm wave base) settings are characterized by alternating tabular-bedded marls and limestones rich in pelagic fossils (ammonites, belemnites), open-marine thin-shelled bivalves (Bositra-like), as well as peloids, which include widely or randomly spaced isolated, small (up to 0.4 m high) and larger (up to 2.5 m high) mounds with upward accretion. The intermediate (near to above storm wave base) settings show tabular, thickened beds of peloidal and/or intraclastic limestones with closely spaced mounds (similar to 1 m high), which often coalesce laterally, forming extensive lenticular structures (up to 10 m wide). The proximal (above storm wave base) depositional settings consist of tabular to irregular beds of intraclastic limestones with widely spaced small (up to 0.4 m high) mounds with mainly tabular geometries. The mound framework contains variable proportions of microbialites (dense to clotted peloidal thrombolitic fabrics) and siliceous sponges (hexactinellids and lithistids in similar proportion) ranging from planar to conic shapes. These morphological and compositional changes allow characterizing three shallowing-upward sequences (sequences 1-3) developed in the overall regressive trend of a basin-wide, upper Bajocian T-R cycle. Episodic wave reworking of the early-cemented mounds resulted in the formation of peloids, small rounded intraclasts, and large, rounded or subangular intraclasts. These nonskeletal micritic grains show internal fabrics related to those of the mound and/or microbialites. A progressive textural gradation towards greater size and lesser roundness of the nonskeletal grains in the areas in the vicinity of the main mound factory is documented (i.e., from large, subangular intraclasts in the areas close to the main mound factory to peloids in the areas that are far from it). We discuss the alternative model of internal waves (instead of storm-induced waves) as the hydrodynamic agent providing the high-energy events needed to explain the origin of the peloidal-intraclastic intermound facies and, likely, also the nutrients needed by the microbialites and siliceous sponges to grow.}, language = {en} } @article{FrijiaForknerMinisinietal.2019, author = {Frijia, Gianluca and Forkner, R. and Minisini, D. and Pacton, M. and Struck, Ulrich and Mutti, Maria}, title = {Cyanobacteria proliferation in the cenomanian-turonian boundary interval of the apennine carbonate platform:}, series = {Geochemistry, geophysics, geosystems}, volume = {20}, journal = {Geochemistry, geophysics, geosystems}, number = {6}, publisher = {American Geophysical Union}, address = {Washington}, issn = {1525-2027}, doi = {10.1029/2019GC008306}, pages = {2698 -- 2716}, year = {2019}, abstract = {Oceanic Anoxic Event-2 (OAE-2; Cenomanian-Turonian) is characterized by extensive deposition of organic carbon-rich deposits (black shales) in ocean basins worldwide as result of a major perturbation of the global carbon cycle. While the sedimentological, geochemical, and paleontological aspects of deep water expressions of OAE-2 have been intensively studied in the last few decades, much less attention has been given to the coeval shallow water deposits. In this study, we present the results of a detailed facies and petrographic (optical microscope and scanning electron microscopy) and geochemical studies (delta C-13(carb), delta C-13 (org), delta N-15(bulk), TOC, and Rock-Eval pyrolysis) on two key shallow marine sections from the Apennine Carbonate Platform (ACP; Italy). Here a continuous record of shallow water carbonates through the OAE-2 interval is preserved, offering the unique opportunity to document the archive of paleoenvironmental changes in a neritic setting, at a tropical latitude and far from the influence of a large continental block. Two conspicuous intervals are characterized by abundant and closely spaced dark microbial laminites found at correlative stratigraphic horizons in the two stratigraphic sections. These laminites contain elevated concentrations of TOC (up to 1\%) relative to microbial capping cycles laminites stratigraphically above and below. The organic matter preserved in these fine-grained laminites is dominated by cyanobacteria remains, which accounted for most of the organic matter produced on the ACP in these intervals. Our study suggests that Tethyan carbonate platforms experienced significant biological changes during OAE-2, alternating, in few kiloyears, between eutrophic phases dominated by microbial communities and mesotrophic/oligotrophic conditions favoring normal carbonate production/sedimentation. The synchronous occurrence of microbialite facies at different locations across the ACP and on other platforms worldwide (e.g., Mexico and Croatia) suggests a causal link between Large Igneous Province volcanism and the environmental conditions necessary to trigger cyanobacterial proliferation on shallow carbonate platforms.}, language = {en} } @article{WangFosterYanetal.2019, author = {Wang, Xiaoxi and Foster, William J. and Yan, J. and Li, A. and Mutti, Maria}, title = {Delayed recovery of metazoan reefs on the Laibin-Heshan platform margin following the Middle Permian (Capitanian) mass extinction}, series = {Global and planetary change}, volume = {180}, journal = {Global and planetary change}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0921-8181}, doi = {10.1016/j.gloplacha.2019.05.005}, pages = {1 -- 15}, year = {2019}, abstract = {Following the Middle Permian (Capitanian) mass extinction there was a global 'reef eclipse', and this event had an important role in the Paleozoic-Mesozoic transition of reef ecosystems. Furthermore, the recovery pattern of reef ecosystems in the Wuchiapingian of South China, before the radiation of Changhsingian reefs, is poorly understood. Here, we present a detailed sedimentological account of the Tieqiao section, South China, which records the only known Wuchiapingian reef setting from South China. Six reef growing phases were identified within six transgressive-regressive cycles. The cycles represent changes of deposition in a shallow basin to a subtidal outer platform setting, and the reefal build-ups are recorded in the shallowest part of the cycles above wave base in the euphotic zone. Our results show that the initial reef recovery started from the shallowing up part of the 1st cycle, within the Clarkina leveni conodont zone, which is two conodont zones earlier than previously recognized. In addition, even though metazoans, such as sponges, do become important in the development of the reef bodies, they are not a major component until later in the Wuchiapingian in the 5th and 6th transgressive-regressive cycles. This suggests a delayed recovery of metazoan reef ecosystems following the Middle Permian extinction. Furthermore, even though sponges do become abundant within the reefs, it is the presence and growth of the encrusters Archaeolithoporella and Tubiphytes and abundance of microbial micrites that play an important role in stabilizing the reef structures that form topographic highs.}, language = {en} }