@article{AaRebmannLeopold2021, author = {Aa, Han van der and Rebmann, Adrian and Leopold, Henrik}, title = {Natural language-based detection of semantic execution anomalies in event logs}, series = {Information systems : IS ; an international journal ; data bases}, volume = {102}, journal = {Information systems : IS ; an international journal ; data bases}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0306-4379}, doi = {10.1016/j.is.2021.101824}, pages = {13}, year = {2021}, abstract = {Anomaly detection in process mining aims to recognize outlying or unexpected behavior in event logs for purposes such as the removal of noise and identification of conformance violations. Existing techniques for this task are primarily frequency-based, arguing that behavior is anomalous because it is uncommon. However, such techniques ignore the semantics of recorded events and, therefore, do not take the meaning of potential anomalies into consideration. In this work, we overcome this caveat and focus on the detection of anomalies from a semantic perspective, arguing that anomalies can be recognized when process behavior does not make sense. To achieve this, we propose an approach that exploits the natural language associated with events. Our key idea is to detect anomalous process behavior by identifying semantically inconsistent execution patterns. To detect such patterns, we first automatically extract business objects and actions from the textual labels of events. We then compare these against a process-independent knowledge base. By populating this knowledge base with patterns from various kinds of resources, our approach can be used in a range of contexts and domains. We demonstrate the capability of our approach to successfully detect semantic execution anomalies through an evaluation based on a set of real-world and synthetic event logs and show the complementary nature of semantics-based anomaly detection to existing frequency-based techniques.}, language = {en} } @book{Aarseth2009, author = {Aarseth, Espen}, title = {Locating the Game in Computer Games : from game structure to game semantics : Ringvorlesung 2009-12-03}, publisher = {Univ. Potsdam}, address = {Potsdam}, year = {2009}, abstract = {The talk will focus on a few central problems in Game Studies: The question of where to locate game meaning, game defintions and how to avoid them, and the conundrum of games vs stories. In all these problems, the choice of ludic perspective (e.g. are games artifacts, systems or activities?) limits our ability to discuss games across disciplinary boundaries. What is needed is a metaperspective that will offer the field a chance to move on.}, language = {en} } @article{AartsAndersonAndersonetal.2015, author = {Aarts, Alexander A. and Anderson, Joanna E. and Anderson, Christopher J. and Attridge, Peter R. and Attwood, Angela and Axt, Jordan and Babel, Molly and Bahnik, Stepan and Baranski, Erica and Barnett-Cowan, Michael and Bartmess, Elizabeth and Beer, Jennifer and Bell, Raoul and Bentley, Heather and Beyan, Leah and Binion, Grace and Borsboom, Denny and Bosch, Annick and Bosco, Frank A. and Bowman, Sara D. and Brandt, Mark J. and Braswell, Erin and Brohmer, Hilmar and Brown, Benjamin T. and Brown, Kristina and Bruening, Jovita and Calhoun-Sauls, Ann and Callahan, Shannon P. and Chagnon, Elizabeth and Chandler, Jesse and Chartier, Christopher R. and Cheung, Felix and Christopherson, Cody D. and Cillessen, Linda and Clay, Russ and Cleary, Hayley and Cloud, Mark D. and Cohn, Michael and Cohoon, Johanna and Columbus, Simon and Cordes, Andreas and Costantini, Giulio and Alvarez, Leslie D. Cramblet and Cremata, Ed and Crusius, Jan and DeCoster, Jamie and DeGaetano, Michelle A. and Della Penna, Nicolas and den Bezemer, Bobby and Deserno, Marie K. and Devitt, Olivia and Dewitte, Laura and Dobolyi, David G. and Dodson, Geneva T. and Donnellan, M. Brent and Donohue, Ryan and Dore, Rebecca A. and Dorrough, Angela and Dreber, Anna and Dugas, Michelle and Dunn, Elizabeth W. and Easey, Kayleigh and Eboigbe, Sylvia and Eggleston, Casey and Embley, Jo and Epskamp, Sacha and Errington, Timothy M. and Estel, Vivien and Farach, Frank J. and Feather, Jenelle and Fedor, Anna and Fernandez-Castilla, Belen and Fiedler, Susann and Field, James G. and Fitneva, Stanka A. and Flagan, Taru and Forest, Amanda L. and Forsell, Eskil and Foster, Joshua D. and Frank, Michael C. and Frazier, Rebecca S. and Fuchs, Heather and Gable, Philip and Galak, Jeff and Galliani, Elisa Maria and Gampa, Anup and Garcia, Sara and Gazarian, Douglas and Gilbert, Elizabeth and Giner-Sorolla, Roger and Gl{\"o}ckner, Andreas and G{\"o}llner, Lars and Goh, Jin X. and Goldberg, Rebecca and Goodbourn, Patrick T. and Gordon-McKeon, Shauna and Gorges, Bryan and Gorges, Jessie and Goss, Justin and Graham, Jesse and Grange, James A. and Gray, Jeremy and Hartgerink, Chris and Hartshorne, Joshua and Hasselman, Fred and Hayes, Timothy and Heikensten, Emma and Henninger, Felix and Hodsoll, John and Holubar, Taylor and Hoogendoorn, Gea and Humphries, Denise J. and Hung, Cathy O. -Y. and Immelman, Nathali and Irsik, Vanessa C. and Jahn, Georg and Jaekel, Frank and Jekel, Marc and Johannesson, Magnus and Johnson, Larissa G. and Johnson, David J. and Johnson, Kate M. and Johnston, William J. and Jonas, Kai and Joy-Gaba, Jennifer A. and Kappes, Heather Barry and Kelso, Kim and Kidwell, Mallory C. and Kim, Seung Kyung and Kirkhart, Matthew and Kleinberg, Bennett and Knezevic, Goran and Kolorz, Franziska Maria and Kossakowski, Jolanda J. and Krause, Robert Wilhelm and Krijnen, Job and Kuhlmann, Tim and Kunkels, Yoram K. and Kyc, Megan M. and Lai, Calvin K. and Laique, Aamir and Lakens, Daniel and Lane, Kristin A. and Lassetter, Bethany and Lazarevic, Ljiljana B. and LeBel, Etienne P. and Lee, Key Jung and Lee, Minha and Lemm, Kristi and Levitan, Carmel A. and Lewis, Melissa and Lin, Lin and Lin, Stephanie and Lippold, Matthias and Loureiro, Darren and Luteijn, Ilse and Mackinnon, Sean and Mainard, Heather N. and Marigold, Denise C. and Martin, Daniel P. and Martinez, Tylar and Masicampo, E. J. and Matacotta, Josh and Mathur, Maya and May, Michael and Mechin, Nicole and Mehta, Pranjal and Meixner, Johannes and Melinger, Alissa and Miller, Jeremy K. and Miller, Mallorie and Moore, Katherine and M{\"o}schl, Marcus and Motyl, Matt and M{\"u}ller, Stephanie M. and Munafo, Marcus and Neijenhuijs, Koen I. and Nervi, Taylor and Nicolas, Gandalf and Nilsonne, Gustav and Nosek, Brian A. and Nuijten, Michele B. and Olsson, Catherine and Osborne, Colleen and Ostkamp, Lutz and Pavel, Misha and Penton-Voak, Ian S. and Perna, Olivia and Pernet, Cyril and Perugini, Marco and Pipitone, R. Nathan and Pitts, Michael and Plessow, Franziska and Prenoveau, Jason M. and Rahal, Rima-Maria and Ratliff, Kate A. and Reinhard, David and Renkewitz, Frank and Ricker, Ashley A. and Rigney, Anastasia and Rivers, Andrew M. and Roebke, Mark and Rutchick, Abraham M. and Ryan, Robert S. and Sahin, Onur and Saide, Anondah and Sandstrom, Gillian M. and Santos, David and Saxe, Rebecca and Schlegelmilch, Rene and Schmidt, Kathleen and Scholz, Sabine and Seibel, Larissa and Selterman, Dylan Faulkner and Shaki, Samuel and Simpson, William B. and Sinclair, H. Colleen and Skorinko, Jeanine L. M. and Slowik, Agnieszka and Snyder, Joel S. and Soderberg, Courtney and Sonnleitner, Carina and Spencer, Nick and Spies, Jeffrey R. and Steegen, Sara and Stieger, Stefan and Strohminger, Nina and Sullivan, Gavin B. and Talhelm, Thomas and Tapia, Megan and te Dorsthorst, Anniek and Thomae, Manuela and Thomas, Sarah L. and Tio, Pia and Traets, Frits and Tsang, Steve and Tuerlinckx, Francis and Turchan, Paul and Valasek, Milan and Van Aert, Robbie and van Assen, Marcel and van Bork, Riet and van de Ven, Mathijs and van den Bergh, Don and van der Hulst, Marije and van Dooren, Roel and van Doorn, Johnny and van Renswoude, Daan R. and van Rijn, Hedderik and Vanpaemel, Wolf and Echeverria, Alejandro Vasquez and Vazquez, Melissa and Velez, Natalia and Vermue, Marieke and Verschoor, Mark and Vianello, Michelangelo and Voracek, Martin and Vuu, Gina and Wagenmakers, Eric-Jan and Weerdmeester, Joanneke and Welsh, Ashlee and Westgate, Erin C. and Wissink, Joeri and Wood, Michael and Woods, Andy and Wright, Emily and Wu, Sining and Zeelenberg, Marcel and Zuni, Kellylynn}, title = {Estimating the reproducibility of psychological science}, series = {Science}, volume = {349}, journal = {Science}, number = {6251}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, organization = {Open Sci Collaboration}, issn = {1095-9203}, doi = {10.1126/science.aac4716}, pages = {8}, year = {2015}, abstract = {Reproducibility is a defining feature of science, but the extent to which it characterizes current research is unknown. We conducted replications of 100 experimental and correlational studies published in three psychology journals using high-powered designs and original materials when available. Replication effects were half the magnitude of original effects, representing a substantial decline. Ninety-seven percent of original studies had statistically significant results. Thirty-six percent of replications had statistically significant results; 47\% of original effect sizes were in the 95\% confidence interval of the replication effect size; 39\% of effects were subjectively rated to have replicated the original result; and if no bias in original results is assumed, combining original and replication results left 68\% with statistically significant effects. Correlational tests suggest that replication success was better predicted by the strength of original evidence than by characteristics of the original and replication teams.}, language = {en} } @article{AbakarovaIskarousNoiray2018, author = {Abakarova, Dzhuma and Iskarous, Khalil and Noiray, Aude}, title = {Quantifying lingual coarticulation in German using mutual information}, series = {The journal of the Acoustical Society of America}, volume = {144}, journal = {The journal of the Acoustical Society of America}, number = {2}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0001-4966}, doi = {10.1121/1.5047669}, pages = {897 -- 907}, year = {2018}, abstract = {In previous research, mutual information (MI) was employed to quantify the physical information shared between consecutive phonological segments, based on electromagnetic articulography data. In this study, MI is extended to quantifying coarticulatory resistance (CR) versus overlap in German using ultrasound imaging. Two measurements are tested as input to MI: (1) the highest point on the tongue body and (2) the first coefficient of the discrete Fourier transform (DFT) of the whole tongue contour. Both measures are used to examine changes in coarticulation between two time points during the syllable span: the consonant midpoint and the vowel onset. Results corroborate previous findings reporting differences in coarticulatory overlap in German and across languages. Further, results suggest that MI used with the highest point on the tongue body captures distinctions related both to place and manner of articulation, while the first DFT coefficient does not provide any additional information regarding global (whole tongue) as opposed to local (individual articulator) aspects of CR. However, both methods capture temporal distinctions in coarticulatory resistance between the two time points. Results are discussed with respect to the potential of MI measure to provide a way of unifying coarticulation quantification methods across data collection techniques.}, language = {en} } @book{AbazaDevoucouxChenetal.2013, author = {Abaza, Mona and Devoucoux, Daniel and Chen, Buyun and Firsching-Tovar, Oly and Kawamura, Yuniya and Lehnert, Gertrud and Mentges, Gabriele and Shukla, Pravina}, title = {Fusion Fashion : culture beyond orientalism and occidentalism}, editor = {Lehnert, Gertrud and Mentges, Gabriele}, publisher = {Peter Lang GmbH}, address = {Frankfurt am Main}, isbn = {978-3-631-60975-0}, pages = {162 S.}, year = {2013}, abstract = {The focus of "Fusion Fashion" is on Orientalism as a sartorial practice which has to be differentiated from the common idea of Orientalism by means of its organization, constitution and reception.}, language = {en} } @article{AbbasVranicHoffmannetal.2018, author = {Abbas, Ioana M. and Vranic, Marija and Hoffmann, Holger and El-Khatib, Ahmed H. and Montes-Bay{\´o}n, Mar{\´i}a and M{\"o}ller, Heiko Michael and Weller, Michael G.}, title = {Investigations of the Copper Peptide Hepcidin-25 by LC-MS/MS and NMR⁺}, series = {International Journal of Molecular Sciences}, volume = {19}, journal = {International Journal of Molecular Sciences}, number = {8}, publisher = {Molecular Diversity Preservation International}, address = {Basel}, issn = {1422-0067}, doi = {10.3390/ijms19082271}, pages = {16}, year = {2018}, abstract = {Hepcidin-25 was identified as themain iron regulator in the human body, and it by binds to the sole iron-exporter ferroportin. Studies showed that the N-terminus of hepcidin is responsible for this interaction, the same N-terminus that encompasses a small copper(II) binding site known as the ATCUN (amino-terminal Cu(II)- and Ni(II)-binding) motif. Interestingly, this copper-binding property is largely ignored in most papers dealing with hepcidin-25. In this context, detailed investigations of the complex formed between hepcidin-25 and copper could reveal insight into its biological role. The present work focuses on metal-bound hepcidin-25 that can be considered the biologically active form. The first part is devoted to the reversed-phase chromatographic separation of copper-bound and copper-free hepcidin-25 achieved by applying basic mobile phases containing 0.1\% ammonia. Further, mass spectrometry (tandemmass spectrometry (MS/MS), high-resolutionmass spectrometry (HRMS)) and nuclear magnetic resonance (NMR) spectroscopy were employed to characterize the copper-peptide. Lastly, a three-dimensional (3D)model of hepcidin-25with bound copper(II) is presented. The identification of metal complexes and potential isoforms and isomers, from which the latter usually are left undetected by mass spectrometry, led to the conclusion that complementary analytical methods are needed to characterize a peptide calibrant or referencematerial comprehensively. Quantitative nuclear magnetic resonance (qNMR), inductively-coupled plasma mass spectrometry (ICP-MS), ion-mobility spectrometry (IMS) and chiral amino acid analysis (AAA) should be considered among others.}, language = {en} } @phdthesis{Abbas2011, author = {Abbas, Raya}, title = {Die Verm{\"o}gensbeziehungen der Ehegatten und nichtehelichen Lebenspartner im serbischen Recht}, series = {Studien zum ausl{\"a}ndischen und internationalen Privatrecht}, volume = {260}, journal = {Studien zum ausl{\"a}ndischen und internationalen Privatrecht}, publisher = {Mohr Siebeck}, address = {T{\"u}bingen}, isbn = {978-3-16-150847-9}, issn = {0720-1141}, pages = {297 S.}, year = {2011}, language = {de} } @article{AbbasiXuKhezrietal.2022, author = {Abbasi, Ali and Xu, Yaolin and Khezri, Ramin and Etesami, Mohammad and Lin, C. and Kheawhom, Soorathep and Lu, Yan}, title = {Advances in characteristics improvement of polymeric membranes/separators for zinc-air batteries}, series = {Materials Today Sustainability}, volume = {18}, journal = {Materials Today Sustainability}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2589-2347}, doi = {10.1016/j.mtsust.2022.100126}, pages = {17}, year = {2022}, abstract = {Zinc-air batteries (ZABs) are gaining popularity for a wide range of applications due to their high energy density, excellent safety, and environmental friendliness. A membrane/separator is a critical component of ZABs, with substantial implications for battery performance and stability, particularly in the case of a battery in solid state format, which has captured increased attention in recent years. In this review, recent advances as well as insight into the architecture of polymeric membrane/separators for ZABs including porous polymer separators (PPSs), gel polymer electrolytes (GPEs), solid polymer electrolytes (SPEs) and anion exchange membranes (AEMs) are discussed. The paper puts forward strategies to enhance stability, ionic conductivity, ionic selectivity, electrolyte storage capacity and mechanical properties for each type of polymeric membrane. In addition, the remaining major obstacles as well as the most potential avenues for future research are examined in detail.}, language = {en} } @article{AbboubBollAvetisyanBhataraetal.2016, author = {Abboub, Nawal and Boll-Avetisyan, Natalie and Bhatara, Anjali and H{\"o}hle, Barbara and Nazzi, Thierry}, title = {An Exploration of Rhythmic Grouping of Speech Sequences by French- and German-Learning Infants}, series = {Frontiers in human neuroscienc}, volume = {10}, journal = {Frontiers in human neuroscienc}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1662-5161}, doi = {10.3389/fnhum.2016.00292}, pages = {6707 -- 6712}, year = {2016}, abstract = {Rhythm in music and speech can be characterized by a constellation of several acoustic cues. Individually, these cues have different effects on rhythmic perception: sequences of sounds alternating in duration are perceived as short-long pairs (weak-strong/iambic pattern), whereas sequences of sounds alternating in intensity or pitch are perceived as loud-soft, or high-low pairs (strong-weak/trochaic pattern). This perceptual bias—called the Iambic-Trochaic Law (ITL)-has been claimed to be an universal property of the auditory system applying in both the music and the language domains. Recent studies have shown that language experience can modulate the effects of the ITL on rhythmic perception of both speech and non-speech sequences in adults, and of non-speech sequences in 7.5-month-old infants. The goal of the present study was to explore whether language experience also modulates infants' grouping of speech. To do so, we presented sequences of syllables to monolingual French- and German-learning 7.5-month-olds. Using the Headturn Preference Procedure (HPP), we examined whether they were able to perceive a rhythmic structure in sequences of syllables that alternated in duration, pitch, or intensity. Our findings show that both French- and German-learning infants perceived a rhythmic structure when it was cued by duration or pitch but not intensity. Our findings also show differences in how these infants use duration and pitch cues to group syllable sequences, suggesting that pitch cues were the easier ones to use. Moreover, performance did not differ across languages, failing to reveal early language effects on rhythmic perception. These results contribute to our understanding of the origin of rhythmic perception and perceptual mechanisms shared across music and speech, which may bootstrap language acquisition.}, language = {en} } @article{AbboudSendPashniaketal.2013, author = {Abboud, Ali and Send, Sebastian and Pashniak, N. and Leitenberger, Wolfram and Ihle, Sebastian and Huth, M. and Hartmann, Robert and Str{\"u}der, Lothar and Pietsch, Ullrich}, title = {Sub-pixel resolution of a pnCCD for X-ray white beam applications}, series = {Journal of instrumentation}, volume = {8}, journal = {Journal of instrumentation}, number = {3}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1748-0221}, doi = {10.1088/1748-0221/8/05/P05005}, pages = {17}, year = {2013}, abstract = {A new approach to achieve sub-pixel spatial resolution in a pnCCD detector with 75 x 75 mu m(2) pixel size is proposed for X-ray applications in single photon counting mode. The approach considers the energy dependence of the charge cloud created by a single photon and its split probabilities between neighboring pixels of the detector based on a rectangular model for the charge cloud density. For cases where the charge of this cloud becomes distributed over three or four pixels the center position of photon impact can be reconstructed with a precision better than 2 mu m. The predicted charge cloud sizes are tested at selected X-ray fluorescence lines emitting energies between 6.4 keV and 17.4 keV and forming charge clouds with size (rms) varying between 8 mu m and 10 mu m respectively. The 2 mu m enhanced spatial resolution of the pnCCD is verified by means of an x-ray transmission experiment throughout an optical grating.}, language = {en} }