@article{HarlovJohanssonVanDenKerkhofetal.2006, author = {Harlov, Daniel E. and Johansson, L. and Van Den Kerkhof, A. and F{\"o}rster, Hans-J{\"u}rgen}, title = {The role of advective fluid flow and diffusion during localized, solid-state dehydration : Sondrum Stenhuggeriet, Halmstad, SW Sweden}, issn = {0022-3530}, year = {2006}, abstract = {A localized dehydration zone, Sondrum stone quarry, Halmstad, SW Sweden, consists of a central, 1 m wide granitic pegmatoid dyke, on either side of which extends a 2.5-3 m wide dehydration zone (650-700 degrees C; 800 MPa; orthopyroxene-clinopyroxene-biotite-amphibole-garnet) overprinting a local migmatized granitic gneiss (amphibole-biotite- garnet). Whole-rock chemistry indicates that dehydration of the granitic gneiss was predominantly isochemical. Exceptions include [Y + heavy rare earth elements (HREE)], Ba, Sr, and F, which are markedly depleted throughout the dehydration zone. Systematic trends in the silicate and fluorapatite mineral chemistry across the dehydration zone include depletion in Fe, (Y + HREE), Na, K, F, and Cl, and enrichment in Mg, Mn, Ca, and Ti. Fluid inclusion chemistry is similar in all three zones and indicates the presence of a fluid containing CO2, NaCl, and H2O components. Water activities in the dehydration zone average 0.36, or XH2O = 0.25. All lines of evidence suggest that the formation of the dehydration zone was due to advective transport of a CO2-rich fluid with a minor NaCl brine component originating from a tectonic fracture. Fluid infiltration resulted in the localized partial breakdown of biotite and amphiboles to pyroxenes releasing Ti and Ca, which were partitioned into the remaining biotite and amphibole, as well as uniform depletion in (Y + HREE), Ba, Sr, Cl, and F. At some later stage, H2O-rich fluids (H2O activity > 0.8) gave rise to localized partial melting and the probable injection of a granitic melt into the tectonic fracture, which resulted in the biotite and amphibole recording a diffusion profile for F across the dehydration zone into the granitic gneiss as well as a diffusion profile in Fe, Mn, and Mg for all Fe-Mg silicate minerals within 100 cm of the pegmatoid dyke}, language = {en} } @article{HarlovProchazkaFoerster2005, author = {Harlov, Daniel E. and Prochazka, V. and F{\"o}rster, Hans-J{\"u}rgen}, title = {Monazite-zircon-fluorapatite associations in the Melechov granite massif, Czech Republic}, issn = {0016-7037}, year = {2005}, language = {en} } @article{HarlovTropperSeifertetal.2006, author = {Harlov, Daniel E. and Tropper, Peter and Seifert, Wolfgang and Nijland, Timo and F{\"o}rster, Hans-J{\"u}rgen}, title = {Formation of Al-rich titanite (CaTiSiO4O-CaAlSiO4OH) reaction rims on ilmenite in metamorphic rocks as a function of fH(2)O and fO(2)}, issn = {0024-4937}, doi = {10.1016/j.lithos.2005.08.005}, year = {2006}, abstract = {Reaction rims of titanite on ilmenite are described in samples from four terranes of amphibolite-facies metapelites and amphibolites namely the Tamil Nadu area, southern India; the Val Strona, area of the Ivrea-Verbano Zone, northern Italy, the Bamble Sector, southern Norway, and the northwestern Austroalpine Otztal Complex. The titanite rims, and hence the stability of titanite (CaTiSiO4O) and Al-OH titanite, i.e. vuaganatite (hypothetical end-member CaAlSiO4OH), are discussed in the light of fH(2)O- and fO(2)-buffered equilibria involving clinopyroxene, amphibole, biotite, ilmenite, magnetite, and quartz in the systems CaO-FeO/Fe2O3-TiO2-SiO2-H2O-O-2 (CFTSH) and CaO-FeO/Fe2O3-Al2O3- SiO2-H2O-O-2 (CFASH) present in each of the examples. Textural evidence suggests that titanite reaction rims on ilmenite in rocks from Tamil Nadu, Val Strona, and the Bamble Sector originated most likely due to hydration reactions such as clinopyroxene + ilmenite +quartz+ H2O = amphibole +titanite and oxidation reactions such as amphibole + ilmenite + O-2 = titanite + magnetite + quartz + H2O during amphibolite-facies metamorphism, or, as in the case of the Otztal Complex, during a subsequent greenschist-facies overprint. Overstepping of these reactions requires fH(2)O and fO(2) to be high for titanite formation, which is also in accordance with equilibria involving Al-OH titanite. This study shows that, in addition to P, T, bulk-rock composition and composition of the coexisting fluid, fO(2) and fH(2)O also play an important role in the formation of Al-bearing titanite during amphibolite- and greenschist-facies metamorphism.}, language = {en} } @article{HarlovWirthFoerster2005, author = {Harlov, Daniel E. and Wirth, R. and F{\"o}rster, Hans-J{\"u}rgen}, title = {An experimental study of dissolution-reprecipitation in fluorapatite : fluid infiltration and the formation of monazite}, issn = {0010-7999}, year = {2005}, abstract = {In a series of timed experiments, monazite inclusions are induced to form in the Durango fluorapatite using 1 and 2 N HCl and H2SO4 solutions at temperatures of 300, 600, and 900 degrees C and pressures of 500 and 1,000 MPa. The monazite inclusions form only in reacted areas, i.e. depleted in (Y+REE)+Si+Na+S+Cl. In the HCl experiments, the reaction front between the reacted and unreacted regions is sharp, whereas in the H2SO4 experiments it ranges from sharp to diffuse. In the 1 N HCl experiments, Ostwald ripening of the monazite inclusions took place both as a function of increased reaction time as well as increased temperature and pressure. Monazite growth was more sluggish in the H2SO4 experiments. Transmission electron microscopic (TEM) investigation of foils cut across the reaction boundary in a fluorapatite from the 1 N HCl experiment (600 degrees C and 500 MPa) indicate that the reacted region along the reaction front is characterized by numerous, sub-parallel, 10-20 nm diameter nano-channels. TEM investigation of foils cut from a reacted region in a fluorapatite from the 1 N H2SO4 experiment at 900 degrees C and 1,000 MPa indicates a pervasive nano- porosity, with the monazite inclusions being in direct contact with the surrounding fluorapatite. For either set of experiments, reacted areas in the fluorapatite are interpreted as replacement reactions, which proceed via a moving interface or reaction front associated with what is essentially a simultaneous dissolution-reprecipitation process. The formation of a micro- and nano-porosity in the metasomatised regions of the fluorapatite allows fluids to permeate the reacted areas. This permits rapid mass transfer in the form of fluid-aided diffusion of cations to and from the growing monazite inclusions. Nano-channels and nano-pores also serve as sites for nucleation and the subsequent growth of the monazite inclusions}, language = {en} } @article{ZiemannFoersterHarlovetal.2005, author = {Ziemann, Martin Andreas and F{\"o}rster, Hans-J{\"u}rgen and Harlov, Daniel E. and Frei, Dirk}, title = {Origin of fluorapatite-monazite assemblages in a metamorphosed, sillimanite-bearing pegmatoid, Reinbolt Hills, East Antarctica}, issn = {0935-1221}, year = {2005}, abstract = {Thermobarometrical and mineral-chemical investigations by electron microprobe and LA-ICP-MS on a sillimanite- bearing pegmatoid from the Reinbolt Hills provide important constraints on the P-T-X-age relations of part of East Antarctica during Pan-African tectonism. U-Th-total Pb ages of monazite imply that the pegmatoid of originally Grenvillan age (zircon U-Pb age of ca. 900 Ma) underwent a major, late Pan-African (Cambrian) regional, granulite-facies metamorphism between 500 and 550 Ma. Most of the monazite formed during this event, as result of apatite metasomatism owing to infiltration of high-grade metamorphic fluids. Apatite-biotite and other mineral thermobarometers define the peak metamorphic temperatures and pressures with 850-950 degrees C and 0.8-1.0 GPa. The F-Cl-OH relations in apatite, and biotite, the chemistry of fluid inclusions and the presence of K-feldspar microveins suggest that the metasomatising fluid was a CO2-bearing, diluted KCl brine. The pegmatoid is the first record of monazite-(Ce) formed from fluorapatite that is rich in U (up to 2.6 Wt\% UO2) and possesses Th/U ratios <1 (0.09 on average). These chemical signatures are direct reflection of the U and Th concentration patterns in the parental fluorapatite}, language = {en} }