@article{MuellerMuellerStolletal.2022, author = {Mueller, Steffen and Mueller, Juliane and Stoll, Josefine and Mayer, Frank}, title = {Effect of six-week resistance and sensorimotor training on trunk strength and stability in elite adolescent athletes}, series = {Frontiers in physiology}, volume = {13}, journal = {Frontiers in physiology}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2022.802315}, pages = {10}, year = {2022}, abstract = {Intervention in the form of core-specific stability exercises is evident to improve trunk stability. The purpose was to assess the effect of an additional 6 weeks sensorimotor or resistance training on maximum isokinetic trunk strength and response to sudden dynamic trunk loading (STL) in highly trained adolescent athletes. The study was conducted as a single-blind, 3-armed randomized controlled trial. Twenty-four adolescent athletes (14f/10 m, 16 +/- 1 yrs.;178 +/- 10 cm; 67 +/- 11 kg; training sessions/week 15 +/- 5; training h/week 22 +/- 8) were randomized into resistance training (RT; n = 7), sensorimotor training (SMT; n = 10), and control group (CG; n = 7). Athletes were instructed to perform standardized, center-based training for 6 weeks, two times per week, with a duration of 1 h each session. SMT consisted of four different core-specific sensorimotor exercises using instable surfaces. RT consisted of four trunk strength exercises using strength training machines, as well as an isokinetic dynamometer. All participants in the CG received an unspecific heart frequency controlled, ergometer-based endurance training (50 min at max. heart frequency of 130HF). For each athlete, each training session was documented in an individual training diary (e.g., level of SMT exercise; 1RM for strength exercise, pain). At baseline (M1) and after 6 weeks of intervention (M2), participants' maximum strength in trunk rotation (ROM:63 degrees) and flexion/extension (ROM:55 degrees) was tested on an isokinetic dynamometer (concentric/eccentric 30 degrees/s). STL was assessed in eccentric (30 degrees/s) mode with additional dynamometer-induced perturbation as a marker of core stability. Peak torque [Nm] was calculated as the main outcome. The primary outcome measurements (trunk rotation/extension peak torque: con, ecc, STL) were statistically analyzed by means of the two-factor repeated measures analysis of variance (alpha = 0.05). Out of 12 possible sessions, athletes participated between 8 and 9 sessions (SMT: 9 +/- 3; RT: 8 +/- 3; CG: 8 +/- 4). Regarding main outcomes of trunk performance, experimental groups showed no significant pre-post difference for maximum trunk strength testing as well as for perturbation compensation (p > 0.05). It is concluded, that future interventions should exceed 6 weeks duration with at least 2 sessions per week to induce enhanced trunk strength or compensatory response to sudden, high-intensity trunk loading in already highly trained adolescent athletes, regardless of training regime.}, language = {en} } @article{MuellerEngelMuelleretal.2018, author = {Mueller, Steffen and Engel, Tilman and M{\"u}ller, Juliane and Stoll, Josefine and Baur, Heiner and Mayer, Frank}, title = {Sensorimotor exercises and enhanced trunk function}, series = {International journal of sports medicine}, volume = {39}, journal = {International journal of sports medicine}, number = {7}, publisher = {Thieme}, address = {Stuttgart}, issn = {0172-4622}, doi = {10.1055/a-0592-7286}, pages = {555 -- 563}, year = {2018}, abstract = {The aim of this study was to investigate the effect of a 6-week sensorimotor or resistance training on maximum trunk strength and response to sudden, high-intensity loading in athletes. Interventions showed no significant difference for maximum strength in concentric and eccentric testing (p>0.05). For perturbation compensation, higher peak torque response following SMT (Extension: +24Nm 95\%CI +/- 19Nm; Rotation: + 19Nm 95\%CI +/- 13Nm) and RT (Extension: +35Nm 95\%CI +/- 16Nm; Rotation: +5Nm 95\%CI +/- 4Nm) compared to CG (Extension: -4Nm 95\%CI +/- 16Nm; Rotation: -2Nm 95\%CI +/- 4Nm) was present (p<0.05).}, language = {en} } @article{MuellerMuellerStolletal.2014, author = {M{\"u}ller, Juliane and M{\"u}ller, Steffen and Stoll, Josefine and Baur, Heiner and Mayer, Frank}, title = {Trunk extensor and flexor strength capacity in healthy young elite athletes aged 11-15 Years}, series = {Journal of strength and conditioning research : the research journal of the NSCA}, volume = {28}, journal = {Journal of strength and conditioning research : the research journal of the NSCA}, number = {5}, publisher = {Lippincott Williams \& Wilkins}, address = {Philadelphia}, issn = {1064-8011}, doi = {10.1519/JSC.0000000000000280}, pages = {1328 -- 1334}, year = {2014}, abstract = {Mueller, J, Mueller, S, Stoll, J, Baur, H, and Mayer, F. Trunk extensor and flexor strength capacity in healthy young elite athletes aged 11-15 years. J Strength Cond Res 28(5): 1328-1334, 2014-Differences in trunk strength capacity because of gender and sports are well documented in adults. In contrast, data concerning young athletes are sparse. The purpose of this study was to assess the maximum trunk strength of adolescent athletes and to investigate differences between genders and age groups. A total of 520 young athletes were recruited. Finally, 377 (n = 233/144 M/F; 13 +/- 1 years; 1.62 +/- 0.11 m height; 51 +/- 12 kg mass; training: 4.5 +/- 2.6 years; training sessions/week: 4.3 +/- 3.0; various sports) young athletes were included in the final data analysis. Furthermore, 5 age groups were differentiated (age groups: 11, 12, 13, 14, and 15 years; n = 90, 150, 42, 43, and 52, respectively). Maximum strength of trunk flexors (Flex) and extensors (Ext) was assessed in all subjects during isokinetic concentric measurements (60 degrees center dot s(-1); 5 repetitions; range of motion: 55 degrees). Maximum strength was characterized by absolute peak torque (Flex(abs), Ext(abs); N center dot m), peak torque normalized to body weight (Flex(norm), Ext(norm); N center dot m center dot kg(-1) BW), and Flex(abs)/Ext(abs) ratio (RKquot). Descriptive data analysis (mean +/- SD) was completed, followed by analysis of variance (alpha = 0.05; post hoc test [Tukey-Kramer]). Mean maximum strength for all athletes was 97 +/- 34 N center dot m in Flex(abs) and 140 +/- 50 N center dot m in Ext(abs) (Flex(norm) = 1.9 +/- 0.3 N center dot m center dot kg(-1) BW, Ext(norm) = 2.8 +/- 0.6 N center dot m center dot kg(-1) BW). Males showed statistically significant higher absolute and normalized values compared with females (p < 0.001). Flex(abs) and Ext(abs) rose with increasing age almost 2-fold for males and females (Flex(abs), Ext(abs): p < 0.001). Flex(norm) and Ext(norm) increased with age for males (p < 0.001), however, not for females (Flex(norm): p = 0.26; Ext(norm): p = 0.20). RKquot (mean +/- SD: 0.71 +/- 0.16) did not reveal any differences regarding age (p = 0.87) or gender (p = 0.43). In adolescent athletes, maximum trunk strength must be discussed in a gender- and age-specific context. The Flex(abs)/Ext(abs) ratio revealed extensor dominance, which seems to be independent of age and gender. The values assessed may serve as a basis to evaluate and discuss trunk strength in athletes.}, language = {en} }