@article{vanLoonBaileyTattonetal.2013, author = {van Loon, Jacco Th. and Bailey, M. and Tatton, B. L. and Apellaniz, Jesus Maiz and Crowther, P. A. and de Koter, A. and Evans, C. J. and Henault-Brunet, V. and Howarth, I. D. and Richter, Philipp and Sana, Hugues and Simon D{\´i}az, Sergio and Taylor, W. and Walborn, N. R.}, title = {The VLT-FLAMES tarantula survey IX. - the interstellar medium seen through diffuse interstellar bands and neutral sodium}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {550}, journal = {Astronomy and astrophysics : an international weekly journal}, number = {9}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/201220210}, pages = {21}, year = {2013}, abstract = {Context. The Tarantula Nebula (a.k.a. 30 Dor) is a spectacular star-forming region in the Large Magellanic Cloud (LMC), seen through gas in the Galactic disc and halo. Diffuse interstellar bands (DIBs) offer a unique probe of the diffuse, cool-warm gas in these regions. Aims. The aim is to use DIBs as diagnostics of the local interstellar conditions, whilst at the same time deriving properties of the yet-unknown carriers of these enigmatic spectral features. Methods. Spectra of over 800 early-type stars from the Very Large Telescope Flames Tarantula Survey (VFTS) were analysed. Maps were created, separately, for the Galactic and LMC absorption in the DIBs at 4428 and 6614 angstrom and - in a smaller region near the central cluster R 136 - neutral sodium (the Na ID doublet); we also measured the DIBs at 5780 and 5797 angstrom. Results. The maps show strong 4428 and 6614 angstrom DIBs in the quiescent cloud complex to the south of 30 Dor but weak absorption in the harsher environments to the north (bubbles) and near the OB associations. The Na maps show at least five kinematic components in the LMC and a shell-like structure surrounding R 136, and small-scale structure in the Milky Way. The strengths of the 4428, 5780, 5797 and 6614 angstrom DIBs are correlated, also with Na absorption and visual extinction. The strong 4428 angstrom DIB is present already at low Na column density but the 6614, 5780 and 5797 angstrom DIBs start to be detectable at subsequently larger Na column densities. Conclusions. The carriers of the 4428, 6614, 5780 and 5797 angstrom DIBs are increasingly prone to removal from irradiated gas. The relative strength of the 5780 and 5797 angstrom DIBs clearly confirm the Tarantula Nebula as well as Galactic high-latitude gas to represent a harsh radiation environment. The resilience of the 4428 angstrom DIB suggests its carrier is large, compact and neutral. Structure is detected in the distribution of cool-warm gas on scales between one and > 100 pc in the LMC and as little as 0.01 pc in the Sun's vicinity. Stellar winds from the central cluster R 136 have created an expanding shell; some infalling gas is also detected, reminiscent of a galactic "fountain".}, language = {en} } @article{HerenzRichterCharltonetal.2013, author = {Herenz, Peter and Richter, Philipp and Charlton, Jane C. and Masiero, Joseph R.}, title = {The milky way halo as a QSO absorption-line system new results from an HST/STIS absorption-line catalogue of galactic high-velocity clouds}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {550}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/201220531}, pages = {23}, year = {2013}, abstract = {We use archival UV absorption-line data from HST/STIS to statistically analyse the absorption characteristics of the high-velocity clouds (HVCs) in the Galactic halo towards more than 40 extragalactic background sources. We determine absorption covering fractions of low-and intermediate ions (Oi, Cii, Si ii, Mgii, Feii, Si iii, Civ, and Si iv) in the range f(c) = 0.20-0.70. For detailed analysis we concentrate on Si ii absorption components in HVCs, for which we investigate the distribution of column densities, b-values, and radial velocities. Combining information for Si ii and Mg II, and using a geometrical HVC model we investigate the contribution of HVCs to the absorption cross section of strong Mg ii absorbers in the local Universe. We estimate that the Galactic HVCs would contribute on average similar to 52 percent to the total strong Mg ii cross section of the Milky Way, if our Galaxy were to be observed from an exterior vantage point. We further estimate that the mean projected covering fraction of strong Mg ii absorption in the Milky Way halo and disc from an exterior vantage point is < f(c,sMgII)> = 0.31 for a halo radius of R = 61 kpc. These numbers, together with the observed number density of strong Mg ii absorbers at low redshift, indicate that the contribution of infalling gas clouds (i.e., HVC analogues) in the halos of Milky Way-type galaxies to the cross section of strong Mgii absorbers is < 34 percent. These findings are in line with the idea that outflowing gas (e. g., produced by galactic winds) in the halos of more actively star-forming galaxies dominate the absorption-cross section of strong Mgii absorbers in the local Universe.}, language = {en} }