@misc{GruenthalStromeyerBosseetal.2018, author = {Gr{\"u}nthal, Gottfried and Stromeyer, Dietrich and Bosse, Christian and Cotton, Fabrice Pierre and Bindi, Dino}, title = {Correction to: The probabilistic seismic hazard assessment of Germanyversion 2016, considering the range of epistemic uncertainties and aleatory variability (vol 16, pg 4339, 2018)}, series = {Bulletin of earthquake engineering : official publication of the European Association for Earthquake Engineering}, volume = {16}, journal = {Bulletin of earthquake engineering : official publication of the European Association for Earthquake Engineering}, number = {10}, publisher = {Springer}, address = {Dordrecht}, issn = {1570-761X}, doi = {10.1007/s10518-018-0398-5}, pages = {4397 -- 4398}, year = {2018}, abstract = {One paragraph of the manuscript of the paper has been inadvertently omitted in the very final stage of its compilation due to a technical mistake. Since this paragraph discusses the declustering of the used earthquake catalogue and is therefore necessary for the understanding of the seismicity data preprocessing, the authors decided to provide this paragraph in form of a correction. The respective paragraph belongs to chapter 2 of the paper, where it was placed originally, and should be inserted into the published paper before the second to the last paragraph. The omitted text reads as follows:}, language = {en} } @misc{JaraSanchezReyesSocquetetal.2018, author = {Jara, Jorge and S{\´a}nchez-Reyes, Hugo and Socquet, Anne and Cotton, Fabrice Pierre and Virieux, Jean and Maksymowicz, Andrei and D{\´i}az-Mojica, John and Walpersdorf, Andrea and Ruiz, Javier and Cotte, Nathalie and Norabuena, Edmundo}, title = {Corrigendum to: Kinematic study of Iquique 2014 Mw 8.1 earthquake: Understanding the segmentation of the seismogenic zone. - (Earth and planetary science letters. - 503 (2018) S. 131 - 143)}, series = {Earth and planetary science letters}, volume = {506}, journal = {Earth and planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2018.11.026}, pages = {347 -- 347}, year = {2018}, abstract = {We study the rupture processes of Iquique earthquake 8.1 (2014/04/01) and its largest aftershock 7.7 (2014/04/03) that ruptured the North Chile subduction zone. High-rate Global Positioning System (GPS) recordings and strong motion data are used to reconstruct the evolution of the slip amplitude, rise time and rupture time of both earthquakes. A two-step inversion scheme is assumed, by first building prior models for both earthquakes from the inversion of the estimated static displacements and then, kinematic inversions in the frequency domain are carried out taken into account this prior information. The preferred model for the mainshock exhibits a seismic moment of 1.73 × 1021 Nm ( 8.1) and maximum slip of ∼9 m, while the aftershock model has a seismic moment of 3.88 × 1020 ( 7.7) and a maximum slip of ∼3 m. For both earthquakes, the final slip distributions show two asperities (a shallow one and a deep one) separated by an area with significant slip deficit. This suggests a segmentation along-dip which might be related to a change of the dipping angle of the subducting slab inferred from gravimetric data. Along-strike, the areas where the seismic ruptures stopped seem to be well correlated with geological features observed from geophysical information (high-resolution bathymetry, gravimetry and coupling maps) that are representative of the long-term segmentation of the subduction margin. Considering the spatially limited portions that were broken by these two earthquakes, our results support the idea that the seismic gap is not filled yet.}, language = {en} } @misc{Brune2018, author = {Brune, Sascha}, title = {Forces within continental and oceanic rifts}, series = {Geology}, volume = {46}, journal = {Geology}, number = {2}, publisher = {American Institute of Physics}, address = {Boulder}, issn = {0091-7613}, doi = {10.1130/focus022018.1}, pages = {191 -- 192}, year = {2018}, language = {en} } @misc{CaupinHoltenQiuetal.2018, author = {Caupin, Frederic and Holten, Vincent and Qiu, Chen and Guillerm, Emmanuel and Wilke, Max and Frenz, Martin and Teixeira, Jose and Soper, Alan K.}, title = {Comment on "Maxima in the thermodynamic response and correlation functions of deeply supercooled water"}, series = {Science}, volume = {360}, journal = {Science}, number = {6390}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {0036-8075}, doi = {10.1126/science.aat1634}, pages = {2}, year = {2018}, abstract = {Kim et al. recently measured the structure factor of deeply supercooled water droplets (Reports, 22 December 2017, p. 1589). We raise several concerns about their data analysis and interpretation. In our opinion, the reported data do not lead to clear conclusions about the origins of water's anomalies.}, language = {en} } @misc{GeissmanJolivetNiemietal.2018, author = {Geissman, John and Jolivet, Laurent and Niemi, Nathan and Schildgen, Taylor F.}, title = {Thank you to our 2017 Peer Reviewers}, series = {Tectonics}, volume = {37}, journal = {Tectonics}, number = {8}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0278-7407}, doi = {10.1029/2018TC005194}, pages = {2272 -- 2277}, year = {2018}, abstract = {An essential, respected, and critical aspect of the modern practice of science and scientific publishing is peer review. The process of peer review facilitates best practices in scientific conduct and communication, ensuring that manuscripts published as accurate, valuable, and clearly communicated. The over 152 papers published in Tectonics in 2017 benefit from the time, effort, and expertise of our reviewers who have provided thoughtfully considered advice on each manuscript. This role is critical to advancing our understanding of the evolution of the continents and their margins, as these reviews lead to even clearer and higher-quality papers. In 2017, the over 423 papers submitted to Tectonics were the beneficiaries of more than 786 reviews provided by 562 members of the tectonics community and related disciplines. To everyone who has volunteered their time and intellect to peer reviewing, thank you for helping Tectonics and all other AGU Publications provide the best science possible.}, language = {en} } @misc{DahmHeimannFunkeetal.2018, author = {Dahm, Torsten and Heimann, Sebastian and Funke, Sigward and Wendt, Siegfried and Rappsilber, Ivo and Bindi, Dino and Plenefisch, Thomas and Cotton, Fabrice Pierre}, title = {Correction to: Seismicity in the block mountains between Halle and Leipzig, Central Germany: centroid moment tensors, ground motion simulation, and felt intensities of two M approximate to 3 earthquakes in 2015 and 2017 (vol 22, pg 985, 2018)}, series = {Journal of seismology}, volume = {22}, journal = {Journal of seismology}, number = {6}, publisher = {Springer}, address = {Dordrecht}, issn = {1383-4649}, doi = {10.1007/s10950-018-9773-6}, pages = {1669 -- 1671}, year = {2018}, language = {en} } @misc{AyzelIzhitskiy2018, author = {Ayzel, Georgy and Izhitskiy, Alexander}, title = {Coupling physically based and data-driven models for assessing freshwater inflow into the Small Aral Sea}, series = {Innovative Water Resources Management in a Changing Environment - Understanding and Balancing Interactions between Humankind and Nature}, volume = {379}, journal = {Innovative Water Resources Management in a Changing Environment - Understanding and Balancing Interactions between Humankind and Nature}, editor = {Xu, Z Peng}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {2199-899X}, doi = {10.5194/piahs-379-151-2018}, pages = {151 -- 158}, year = {2018}, abstract = {The Aral Sea desiccation and related changes in hydroclimatic conditions on a regional level is a hot topic for past decades. The key problem of scientific research projects devoted to an investigation of modern Aral Sea basin hydrological regime is its discontinuous nature - the only limited amount of papers takes into account the complex runoff formation system entirely. Addressing this challenge we have developed a continuous prediction system for assessing freshwater inflow into the Small Aral Sea based on coupling stack of hydrological and data-driven models. Results show a good prediction skill and approve the possibility to develop a valuable water assessment tool which utilizes the power of classical physically based and modern machine learning models both for territories with complex water management system and strong water-related data scarcity. The source code and data of the proposed system is available on a Github page (https://github.com/SMASHIproject/IWRM2018).}, language = {en} } @misc{LuterbacherSprinz2018, author = {Luterbacher, Urs and Sprinz, Detlef F.}, title = {Foreword}, series = {Global climate policy: actors, concepts, and enduring challenges}, journal = {Global climate policy: actors, concepts, and enduring challenges}, editor = {Luterbacher, Urs and Sprinz, Detlef F.}, publisher = {MIT Press}, address = {Cambridge}, isbn = {978-0-262-53534-2}, pages = {IX -- XI}, year = {2018}, language = {en} } @misc{Sprinz2018, author = {Sprinz, Detlef F.}, title = {Our Conclusions}, series = {Global Climate Policy: Actors, Concepts, and Enduring Challenges}, journal = {Global Climate Policy: Actors, Concepts, and Enduring Challenges}, editor = {Luterbacher, Urs and Sprinz, Detlef F.}, publisher = {MIT Press}, address = {Cambridge}, isbn = {978-0-262-53534-2}, pages = {323 -- 335}, year = {2018}, language = {en} } @misc{LuehrWichtGilderetal.2018, author = {L{\"u}hr, Hermann and Wicht, Johannes and Gilder, Stuart A. and Holschneider, Matthias}, title = {Preface}, series = {Magnetic Fields in the Solar System: Planets, Moons and Solar Wind Interactions}, volume = {448}, journal = {Magnetic Fields in the Solar System: Planets, Moons and Solar Wind Interactions}, publisher = {Springer}, address = {Dordrecht}, isbn = {978-3-319-64292-5}, issn = {0067-0057}, pages = {V -- VI}, year = {2018}, language = {en} }