@article{YamazakiWendtMiyoshietal.2020, author = {Yamazaki, Yosuke and Wendt, Vivien and Miyoshi, Y. and Stolle, Claudia and Siddiqui, Tarique Adnan and Kervalishvili, Guram N. and Laštovička, J. and Kozubek, M. and Ward, W. and Themens, D. R. and Kristoffersen, S. and Alken, Patrick}, title = {September 2019 Antarctic sudden stratospheric warming}, series = {Geophysical Research Letters}, volume = {47}, journal = {Geophysical Research Letters}, number = {1}, publisher = {Wiley}, address = {Hoboken}, issn = {0094-8276}, doi = {10.1029/2019GL086577}, pages = {1 -- 12}, year = {2020}, abstract = {An exceptionally strong stationary planetary wave with Zonal Wavenumber 1 led to a sudden stratospheric warming (SSW) in the Southern Hemisphere in September 2019. Ionospheric data from European Space Agency's Swarm satellite constellation mission show prominent 6-day variations in the dayside low-latitude region at this time, which can be attributed to forcing from the middle atmosphere by the Rossby normal mode "quasi-6-day wave" (Q6DW). Geopotential height measurements by the Microwave Limb Sounder aboard National Aeronautics and Space Administration's Aura satellite reveal a burst of global Q6DW activity in the mesosphere and lower thermosphere during the SSW, which is one of the strongest in the record. The Q6DW is apparently generated in the polar stratosphere at 30-40 km, where the atmosphere is unstable due to strong vertical wind shear connected with planetary wave breaking. These results suggest that an Antarctic SSW can lead to ionospheric variability through wave forcing from the middle atmosphere. Plain Language Summary: A sudden stratospheric warming (SSW) is an extreme wintertime polar meteorological phenomenon occurring mostly over the Arctic region. Studies have shown that Arctic SSW can influence the entire atmosphere. In September 2019, a rare SSW event occurred in the Antarctic region, providing an opportunity to investigate its broader impact on the whole atmosphere. We present observations from the middle atmosphere and ionosphere during this event, noting unusually strong wave activity throughout this region. Our results suggest that an Antarctic SSW can have a significant impact on the whole atmosphere system similar to those due to Arctic events.}, language = {en} } @article{SiddiquiStolleLuehr2017, author = {Siddiqui, Tarique Adnan and Stolle, Claudia and L{\"u}hr, Hermann}, title = {Longitude-dependent lunar tidal modulation of the equatorial electrojet during stratospheric sudden warmings}, series = {Journal of geophysical research : Space physics}, volume = {122}, journal = {Journal of geophysical research : Space physics}, number = {3}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9380}, doi = {10.1002/2016JA023609}, pages = {3760 -- 3776}, year = {2017}, abstract = {The effects of coupling between different layers of the atmosphere during Stratospheric Sudden Warming (SSW) events have been studied quite extensively in the past fewyears, and in this context large lunitidal enhancements in the equatorial ionosphere have also been widely discussed. In this study we report about the longitudinal variabilities in lunitidal enhancement in the equatorial electrojet (EEJ) during SSWs through ground and space observations in the Peruvian and Indian sectors. We observe that the amplification of lunitidal oscillations in EEJ is significantly larger over the Peruvian sector in comparison to the Indian sector. We further compare the lunitidal oscillations in both the sectors during the 2005-2006 and 2008-2009 major SSW events and during a non-SSW winter of 2006-2007. It is found that the lunitidal amplitude in EEJ over the Peruvian sector showed similar enhancements during both the major SSWs, but the enhancements were notably different in the Indian sector. Independent from SSW events, we have also performed a climatological analysis of the lunar modulation of the EEJ during December solstice over both the sectors by using 10years of CHAMP magnetic measurements and found larger lunitidal amplitudes over the Peruvian sector confirming the results from ground magnetometer observations. We have also analyzed the semidiurnal lunar tidal amplitude in neutral temperature measurements from Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) at 110km and found lesser longitudinal variability than the lunitidal amplitude in EEJ. Our results suggest that the longitudinal variabilities in lunitidal modulation of the EEJ during SSWs could be related to electrodynamics in the E region dynamo.}, language = {en} } @article{SiddiquiYamazakiStolleetal.2018, author = {Siddiqui, Tarique Adnan and Yamazaki, Yosuke and Stolle, Claudia and L{\"u}hr, Hermann and Matzka, J{\"u}rgen and Maute, Astrid and Pedatella, Nicholas}, title = {Dependence of Lunar Tide of the Equatorial Electrojet on the Wintertime Polar Vortex, Solar Flux, and QBO}, series = {Geophysical research letters}, volume = {45}, journal = {Geophysical research letters}, number = {9}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1029/2018GL077510}, pages = {3801 -- 3810}, year = {2018}, abstract = {The lower atmospheric forcing effects on the ionosphere are particularly evident during extreme meteorological events known as sudden stratospheric warmings (SSWs). During SSWs, the polar stratosphere and ionosphere, two distant atmospheric regions, are coupled through the SSW-induced modulation of atmospheric migrating and nonmigrating tides. The changes in the migrating semidiurnal solar and lunar tides are the major source of ionospheric variabilities during SSWs. In this study, we use 55 years of ground-magnetometer observations to investigate the composite characteristics of the lunar tide of the equatorial electrojet (EEJ) during SSWs. These long-term observations allow us to capture the EEJ lunar tidal response to the SSWs in a statistical sense. Further, we examine the influence of solar flux conditions and the phases of quasi-biennial oscillation (QBO) on the lunar tide and find that the QBO phases and solar flux conditions modulate the EEJ lunar tidal response during SSWs in a similar way as they modulate the wintertime Arctic polar vortex. This work provides first evidence of modulation of the EEJ lunar tide due to QBO. Plain Language Summary This study focuses on the vertical coupling between the polar stratosphere and equatorial ionosphere during sudden stratospheric warmings (SSWs). Extreme meteorological events such as SSWs induce variabilities in the ionosphere by modulating the atmospheric migrating and nonmigrating tides, and these variabilities can be comparable to a moderate geomagnetic storm. Observations and modeling studies have found that the changes in the migrating semidiurnal solar and lunar tides are a major source of ionospheric variabilities during SSWs. The equatorial electrojet (EEJ) is a narrow ribbon of current flowing over the dip equator in the ionosphere and is particularly sensitive to tidal changes. Long-term ground-magnetometer recordings have been used in this study to estimate the variations induced in EEJ during SSWs due to the lunar semidiurnal tide in a statistical sense. The wintertime Arctic polar vortex and the occurrence of SSWs are modulated by solar flux conditions and the phases of quasi-biennial oscillation. In this work, we find the first evidence of lunar tidal modulation of EEJ due to quasi-biennial oscillation during SSWs. Our findings will be useful in providing improved predictions of ionospheric variations due to SSWs. The aeronomy community will be the most impacted by this paper.}, language = {en} }