@article{ObuLantuitFritzetal.2016, author = {Obu, Jaroslav and Lantuit, Hugues and Fritz, Michael and Pollard, Wayne H. and Sachs, Torsten and Guenther, Frank}, title = {Relation between planimetric and volumetric measurements of permafrost coast erosion: a case study from Herschel Island, western Canadian Arctic}, series = {Polar research : a Norwegian journal of Polar research}, volume = {35}, journal = {Polar research : a Norwegian journal of Polar research}, publisher = {Co-Action Publ.}, address = {Jarfalla}, issn = {0800-0395}, doi = {10.3402/polar.v35.30313}, pages = {57 -- 99}, year = {2016}, abstract = {Ice-rich permafrost coasts often undergo rapid erosion, which results in land loss and release of considerable amounts of sediment, organic carbon and nutrients, impacting the near-shore ecosystems. Because of the lack of volumetric erosion data, Arctic coastal erosion studies typically report on planimetric erosion. Our aim is to explore the relationship between planimetric and volumetric coastal erosion measurements and to update the coastal erosion rates on Herschel Island in the Canadian Arctic. We used high-resolution digital elevation models to compute sediment release and compare volumetric data to planimetric estimations of coastline movements digitized from satellite imagery. Our results show that volumetric erosion is locally less variable and likely corresponds better with environmental forcing than planimetric erosion. Average sediment release volumes are in the same range as sediment release volumes calculated from coastline movements combined with cliff height. However, the differences between these estimates are significant for small coastal sections. We attribute the differences between planimetric and volumetric coastal erosion measurements to mass wasting, which is abundant along the coasts of Herschel Island. The average recorded coastline retreat on Herschel Island was 0.68m a(-1) for the period 2000-2011. Erosion rates increased by more than 50\% in comparison with the period 1970-2000, which is in accordance with a recently observed increase along the Alaskan Beaufort Sea. The estimated annual sediment release was 28.2 m(3) m(-1) with resulting fluxes of 590 kg C m(-1) and 104 kg N m(-1).}, language = {en} } @article{SchwanghartGroomKuhnetal.2013, author = {Schwanghart, Wolfgang and Groom, Geoff and Kuhn, Nikolaus J. and Heckrath, Goswin}, title = {Flow network derivation from a high resolution DEM in a low relief, agrarian landscape}, series = {Earth surface processes and landforms : the journal of the British Geomorphological Research Group}, volume = {38}, journal = {Earth surface processes and landforms : the journal of the British Geomorphological Research Group}, number = {13}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0197-9337}, doi = {10.1002/esp.3452}, pages = {1576 -- 1586}, year = {2013}, abstract = {Digital flow networks derived from digital elevation models (DEMs) sensitively react to errors due to measurement, data processing and data representation. Since high-resolution DEMs are increasingly used in geomorphological and hydrological research, automated and semi-automated procedures to reduce the impact of such errors on flow networks are required. One such technique is stream-carving, a hydrological conditioning technique to ensure drainage connectivity in DEMs towards the DEM edges. Here we test and modify a state-of-the-art carving algorithm for flow network derivation in a low-relief, agricultural landscape characterized by a large number of spurious, topographic depressions. Our results show that the investigated algorithm reconstructs a benchmark network insufficiently in terms of carving energy, distance and a topological network measure. The modification to the algorithm that performed best, combines the least-cost auxiliary topography (LCAT) carving with a constrained breaching algorithm that explicitly takes automatically identified channel locations into account. We applied our methods to a low relief landscape, but the results can be transferred to flow network derivation of DEMs in moderate to mountainous relief in situations where the valley bottom is broad and flat and precise derivations of the flow networks are needed.}, language = {en} }