@article{SandevMetzlerTomovski2012, author = {Sandev, Trifce and Metzler, Ralf and Tomovski, Zivorad}, title = {Velocity and displacement correlation functions for fractional generalized Langevin equations}, series = {Fractional calculus and applied analysis : an international journal for theory and applications}, volume = {15}, journal = {Fractional calculus and applied analysis : an international journal for theory and applications}, number = {3}, publisher = {Versita}, address = {Warsaw}, issn = {1311-0454}, doi = {10.2478/s13540-012-0031-2}, pages = {426 -- 450}, year = {2012}, abstract = {We study analytically a generalized fractional Langevin equation. General formulas for calculation of variances and the mean square displacement are derived. Cases with a three parameter Mittag-Leffler frictional memory kernel are considered. Exact results in terms of the Mittag-Leffler type functions for the relaxation functions, average velocity and average particle displacement are obtained. The mean square displacement and variances are investigated analytically. Asymptotic behaviors of the particle in the short and long time limit are found. The model considered in this paper may be used for modeling anomalous diffusive processes in complex media including phenomena similar to single file diffusion or possible generalizations thereof. We show the importance of the initial conditions on the anomalous diffusive behavior of the particle.}, language = {en} } @article{WangSenoSokolovetal.2020, author = {Wang, Wei and Seno, Flavio and Sokolov, Igor M. and Chechkin, Aleksei V. and Metzler, Ralf}, title = {Unexpected crossovers in correlated random-diffusivity processes}, series = {New Journal of Physics}, volume = {22}, journal = {New Journal of Physics}, publisher = {Dt. Physikalische Ges.}, address = {Bad Honnef}, issn = {1367-2630}, doi = {10.1088/1367-2630/aba390}, pages = {17}, year = {2020}, abstract = {The passive and active motion of micron-sized tracer particles in crowded liquids and inside living biological cells is ubiquitously characterised by 'viscoelastic' anomalous diffusion, in which the increments of the motion feature long-ranged negative and positive correlations. While viscoelastic anomalous diffusion is typically modelled by a Gaussian process with correlated increments, so-called fractional Gaussian noise, an increasing number of systems are reported, in which viscoelastic anomalous diffusion is paired with non-Gaussian displacement distributions. Following recent advances in Brownian yet non-Gaussian diffusion we here introduce and discuss several possible versions of random-diffusivity models with long-ranged correlations. While all these models show a crossover from non-Gaussian to Gaussian distributions beyond some correlation time, their mean squared displacements exhibit strikingly different behaviours: depending on the model crossovers from anomalous to normal diffusion are observed, as well as a priori unexpected dependencies of the effective diffusion coefficient on the correlation exponent. Our observations of the non-universality of random-diffusivity viscoelastic anomalous diffusion are important for the analysis of experiments and a better understanding of the physical origins of 'viscoelastic yet non-Gaussian' diffusion.}, language = {en} } @article{BodrovaChechkinCherstvyetal.2015, author = {Bodrova, Anna S. and Chechkin, Aleksei V. and Cherstvy, Andrey G. and Metzler, Ralf}, title = {Ultraslow scaled Brownian motion}, series = {New journal of physics : the open-access journal for physics}, volume = {17}, journal = {New journal of physics : the open-access journal for physics}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1367-2630}, doi = {10.1088/1367-2630/17/6/063038}, pages = {16}, year = {2015}, abstract = {We define and study in detail utraslow scaled Brownian motion (USBM) characterized by a time dependent diffusion coefficient of the form D(t) similar or equal to 1/t. For unconfined motion the mean squared displacement (MSD) of USBM exhibits an ultraslow, logarithmic growth as function of time, in contrast to the conventional scaled Brownian motion. In a harmonic potential the MSD of USBM does not saturate but asymptotically decays inverse-proportionally to time, reflecting the highly non-stationary character of the process. We show that the process is weakly non-ergodic in the sense that the time averaged MSD does not converge to the regular MSD even at long times, and for unconfined motion combines a linear lag time dependence with a logarithmic term. The weakly non-ergodic behaviour is quantified in terms of the ergodicity breaking parameter. The USBM process is also shown to be ageing: observables of the system depend on the time gap between initiation of the test particle and start of the measurement of its motion. Our analytical results are shown to agree excellently with extensive computer simulations.}, language = {en} } @article{MetzlerCherstvyChechkinetal.2015, author = {Metzler, Ralf and Cherstvy, Andrey G. and Chechkin, Aleksei V. and Bodrova, Anna S.}, title = {Ultraslow scaled Brownian motion}, series = {New journal of physics : the open-access journal for physics}, volume = {17}, journal = {New journal of physics : the open-access journal for physics}, number = {063038}, publisher = {Dt. Physikalische Ges., IOP}, address = {Bad Honnef, London}, issn = {1367-2630}, doi = {10.1088/1367-2630/17/6/063038}, year = {2015}, abstract = {We define and study in detail utraslow scaled Brownian motion (USBM) characterized by a time dependent diffusion coefficient of the form . For unconfined motion the mean squared displacement (MSD) of USBM exhibits an ultraslow, logarithmic growth as function of time, in contrast to the conventional scaled Brownian motion. In a harmonic potential the MSD of USBM does not saturate but asymptotically decays inverse-proportionally to time, reflecting the highly non-stationary character of the process. We show that the process is weakly non-ergodic in the sense that the time averaged MSD does not converge to the regular MSD even at long times, and for unconfined motion combines a linear lag time dependence with a logarithmic term. The weakly non-ergodic behaviour is quantified in terms of the ergodicity breaking parameter. The USBM process is also shown to be ageing: observables of the system depend on the time gap between initiation of the test particle and start of the measurement of its motion. Our analytical results are shown to agree excellently with extensive computer simulations.}, language = {en} } @misc{Metzler2020, author = {Metzler, Ralf}, title = {Superstatistics and non-Gaussian diffusion}, series = {The European physical journal special topics}, volume = {229}, journal = {The European physical journal special topics}, number = {5}, publisher = {Springer}, address = {Heidelberg}, issn = {1951-6355}, doi = {10.1140/epjst/e2020-900210-x}, pages = {711 -- 728}, year = {2020}, abstract = {Brownian motion and viscoelastic anomalous diffusion in homogeneous environments are intrinsically Gaussian processes. In a growing number of systems, however, non-Gaussian displacement distributions of these processes are being reported. The physical cause of the non-Gaussianity is typically seen in different forms of disorder. These include, for instance, imperfect "ensembles" of tracer particles, the presence of local variations of the tracer mobility in heteroegenous environments, or cases in which the speed or persistence of moving nematodes or cells are distributed. From a theoretical point of view stochastic descriptions based on distributed ("superstatistical") transport coefficients as well as time-dependent generalisations based on stochastic transport parameters with built-in finite correlation time are invoked. After a brief review of the history of Brownian motion and the famed Gaussian displacement distribution, we here provide a brief introduction to the phenomenon of non-Gaussianity and the stochastic modelling in terms of superstatistical and diffusing-diffusivity approaches.}, language = {en} } @article{ŚlęzakMetzlerMagdziarz2018, author = {Ślęzak, Jakub and Metzler, Ralf and Magdziarz, Marcin}, title = {Superstatistical generalised Langevin equation}, series = {New Journal of Physics}, volume = {20}, journal = {New Journal of Physics}, number = {023026}, publisher = {Deutsche Physikalische Gesellschaft / Institute of Physics}, address = {Bad Honnef und London}, issn = {1367-2630}, doi = {10.1088/1367-2630/aaa3d4}, pages = {1 -- 25}, year = {2018}, abstract = {Recent advances in single particle tracking and supercomputing techniques demonstrate the emergence of normal or anomalous, viscoelastic diffusion in conjunction with non-Gaussian distributions in soft, biological, and active matter systems. We here formulate a stochastic model based on a generalised Langevin equation in which non-Gaussian shapes of the probability density function and normal or anomalous diffusion have a common origin, namely a random parametrisation of the stochastic force. We perform a detailed analysis demonstrating how various types of parameter distributions for the memory kernel result in exponential, power law, or power-log law tails of the memory functions. The studied system is also shown to exhibit a further unusual property: the velocity has a Gaussian one point probability density but non-Gaussian joint distributions. This behaviour is reflected in the relaxation from a Gaussian to a non-Gaussian distribution observed for the position variable. We show that our theoretical results are in excellent agreement with stochastic simulations.}, language = {en} } @article{XuZhouMetzleretal.2022, author = {Xu, Pengbo and Zhou, Tian and Metzler, Ralf and Deng, Weihua}, title = {Stochastic harmonic trapping of a L{\´e}vy walk}, series = {New journal of physics : the open-access journal for physics / Deutsche Physikalische Gesellschaft ; IOP, Institute of Physics}, volume = {24}, journal = {New journal of physics : the open-access journal for physics / Deutsche Physikalische Gesellschaft ; IOP, Institute of Physics}, number = {3}, publisher = {Deutsche Physikalische Gesellschaft}, address = {Bad Honnef}, issn = {1367-2630}, doi = {10.1088/1367-2630/ac5282}, pages = {1 -- 28}, year = {2022}, abstract = {We introduce and study a L{\´e}vy walk (LW) model of particle spreading with a finite propagation speed combined with soft resets, stochastically occurring periods in which an harmonic external potential is switched on and forces the particle towards a specific position. Soft resets avoid instantaneous relocation of particles that in certain physical settings may be considered unphysical. Moreover, soft resets do not have a specific resetting point but lead the particle towards a resetting point by a restoring Hookean force. Depending on the exact choice for the LW waiting time density and the probability density of the periods when the harmonic potential is switched on, we demonstrate a rich emerging response behaviour including ballistic motion and superdiffusion. When the confinement periods of the soft-reset events are dominant, we observe a particle localisation with an associated non-equilibrium steady state. In this case the stationary particle probability density function turns out to acquire multimodal states. Our derivations are based on Markov chain ideas and LWs with multiple internal states, an approach that may be useful and flexible for the investigation of other generalised random walks with soft and hard resets. The spreading efficiency of soft-rest LWs is characterised by the first-passage time statistic.}, language = {en} } @article{PalyulinMetzler2014, author = {Palyulin, Vladimir V. and Metzler, Ralf}, title = {Speeding up the first-passage for subdiffusion by introducing a finite potential barrier}, series = {Journal of physics : A, Mathematical and theoretical}, volume = {47}, journal = {Journal of physics : A, Mathematical and theoretical}, number = {3}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1751-8113}, doi = {10.1088/1751-8113/47/3/032002}, pages = {13}, year = {2014}, abstract = {We show that for a subdiffusive continuous time random walk with scale-free waiting time distribution the first-passage dynamics on a finite interval can be optimized by introduction of a piecewise linear potential barrier. Analytical results for the survival probability and first-passage density based on the fractional Fokker-Planck equation are shown to agree well with Monte Carlo simulations results. As an application we discuss an improved design for efficient translocation of gradient copolymers compared to homopolymer translocation in a quasi-equilibrium approximation.}, language = {en} } @article{SposiniMetzlerOshanin2019, author = {Sposini, Vittoria and Metzler, Ralf and Oshanin, Gleb}, title = {Single-trajectory spectral analysis of scaled Brownian motion}, series = {New Journal of Physics}, volume = {21}, journal = {New Journal of Physics}, publisher = {Deutsche Physikalische Gesellschaft ; IOP, Institute of Physics}, address = {Bad Honnef und London}, issn = {1367-2630}, doi = {10.1088/1367-2630/ab2f52}, pages = {16}, year = {2019}, abstract = {Astandard approach to study time-dependent stochastic processes is the power spectral density (PSD), an ensemble-averaged property defined as the Fourier transform of the autocorrelation function of the process in the asymptotic limit of long observation times, T → ∞. In many experimental situations one is able to garner only relatively few stochastic time series of finite T, such that practically neither an ensemble average nor the asymptotic limit T → ∞ can be achieved. To accommodate for a meaningful analysis of such finite-length data we here develop the framework of single-trajectory spectral analysis for one of the standard models of anomalous diffusion, scaled Brownian motion.Wedemonstrate that the frequency dependence of the single-trajectory PSD is exactly the same as for standard Brownian motion, which may lead one to the erroneous conclusion that the observed motion is normal-diffusive. However, a distinctive feature is shown to be provided by the explicit dependence on the measurement time T, and this ageing phenomenon can be used to deduce the anomalous diffusion exponent.Wealso compare our results to the single-trajectory PSD behaviour of another standard anomalous diffusion process, fractional Brownian motion, and work out the commonalities and differences. Our results represent an important step in establishing singletrajectory PSDs as an alternative (or complement) to analyses based on the time-averaged mean squared displacement.}, language = {en} } @article{ShinCherstvyMetzler2015, author = {Shin, Jaeoh and Cherstvy, Andrey G. and Metzler, Ralf}, title = {Self-subdiffusion in solutions of star-shaped crowders: non-monotonic effects of inter-particle interactions}, series = {New journal of physics : the open-access journal for physics}, volume = {17}, journal = {New journal of physics : the open-access journal for physics}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1367-2630}, doi = {10.1088/1367-2630/17/11/113028}, pages = {12}, year = {2015}, abstract = {We examine by extensive computer simulations the self-diffusion of anisotropic star-like particles in crowded two-dimensional solutions. We investigate the implications of the area coverage fraction phi of the crowders and the crowder-crowder adhesion properties on the regime of transient anomalous diffusion. We systematically compute the mean squared displacement (MSD) of the particles, their time averaged MSD, and the effective diffusion coefficient. The diffusion is ergodic in the limit of long traces, such that the mean time averaged MSD converges towards the ensemble averaged MSD, and features a small residual amplitude spread of the time averaged MSD from individual trajectories. At intermediate time scales, we quantify the anomalous diffusion in the system. Also, we show that the translational-but not rotational-diffusivity of the particles Dis a nonmonotonic function of the attraction strength between them. Both diffusion coefficients decrease as the power law D(phi) similar to (1 - phi/phi*)(2 ... 2.4) with the area fraction phi occupied by the crowders and the critical value phi*. Our results might be applicable to rationalising the experimental observations of non-Brownian diffusion for a number of standard macromolecular crowders used in vitro to mimic the cytoplasmic conditions of living cells.}, language = {en} }