@article{FrascaRichtervonGrabergetal.2011, author = {Frasca, Stefano and Richter, Claudia and von Graberg, Till and Smarsly, Bernd M. and Wollenberger, Ursula}, title = {Electrochemical switchable protein-based optical device}, series = {Engineering in life sciences : Industry, Environment, Plant, Food}, volume = {11}, journal = {Engineering in life sciences : Industry, Environment, Plant, Food}, number = {6}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {1618-0240}, doi = {10.1002/elsc.201100079}, pages = {554 -- 558}, year = {2011}, abstract = {The present work contributes to the development of reusable sensing systems with a visual evaluation of the detection process related to an analyte. An electrochemical switchable protein-based optical device was designed with the core part composed of cytochrome c immobilized in a mesoporous indium tin oxide film. A color-developing redox-sensitive dye was used as switchable component of the system. The cytochrome c-catalyzed oxidation of the dye by hydrogen peroxide is spectroscopically investigated. When the dye is co-immobilized with the protein, its redox state is easily controlled by application of an electrical potential at the supporting material. This enables to electrochemically reset the system to the initial state and repetitive signal generation. The implemented reset function of the color forming reaction will make calibration of small test devices possible. The principle can be extended to other color forming redox reactions and to coupled enzyme systems, such as rapid food testing and indication of critical concentrations of metabolites for health care.}, language = {en} } @article{FrascavonGrabergFengetal.2010, author = {Frasca, Stefano and von Graberg, Till and Feng, Jiu-Ju and Thomas, Arne and Smarsly, Bernd M. and Weidinger, Inez M. and Scheller, Frieder W. and Hildebrandt, Peter and Wollenberger, Ursula}, title = {Mesoporous indium tin oxide as a novel platform for bioelectronics}, issn = {1867-3880}, doi = {10.1002/cctc.201000047}, year = {2010}, abstract = {Stable immobilization and reversible electrochemistry of cytochrome c in a tranparent indium tin oxide film with a well-defined mesoporosity (mpITO) is demonstrated. the transparency and good conductivity, in combination with the large surface area of mpITO, allow the incorporation of a high amount of elelctroactive biomolecules and their electrochemical and spectroscopic investigation. UV/Vis and resonance Raman spectroscopy, in combination with direct protein voltammetry are employed for the characterization of cytochrome c immobilized in the mpITO and reveal no perturbant of the structural of the integrity of the redox protein. The potential of this modified material as a biosensor detection of superoxide anions is also demonstrated.}, language = {en} } @article{GressHeiligSmarslyetal.2009, author = {Gress, Anja and Heilig, Anne and Smarsly, Bernd M. and Heydenreich, Matthias and Schlaad, Helmut}, title = {Hydrogen-bonded polymer nanotubes in water}, issn = {0024-9297}, doi = {10.1021/Ma900227t}, year = {2009}, abstract = {Intermolecular hydrogen bonding, not hydrophobic interaction, is the driving force for the spontaneous self- assembly of glycosylated polyoxazoline chains into nanotubes in dilute aqueous solution. The structural information is encoded in the relatively simple molecular structure of chains consisting of a tertiary polyamide backbone (hydrogen- accepting) and glucose side chains (hydrogen-donating). The formation of the nanotubes should occur through bending and closing of a 2D hydrogen-bonded layer of interdigitated polymer chains.}, language = {en} }