@article{BerbenBoin'tZandtetal.2022, author = {Berben, Tom and Bo, Franco Forlano and in 't Zandt, Michiel H. and Yang, Sizhong and Liebner, Susanne and Welte, Cornelia U.}, title = {The Polar Fox Lagoon in Siberia harbours a community of Bathyarchaeota possessing the potential for peptide fermentation and acetogenesis}, series = {Antonie van Leeuwenhoek : international journal of general and molecular microbiology}, volume = {115}, journal = {Antonie van Leeuwenhoek : international journal of general and molecular microbiology}, publisher = {Springer}, address = {Dordrecht}, issn = {0003-6072}, doi = {10.1007/s10482-022-01767-z}, pages = {1229 -- 1244}, year = {2022}, abstract = {Archaea belonging to the phylum Bathyarchaeota are the predominant archaeal species in cold, anoxic marine sediments and additionally occur in a variety of habitats, both natural and man-made. Metagenomic and single-cell sequencing studies suggest that Bathyarchaeota may have a significant impact on the emissions of greenhouse gases into the atmosphere, either through direct production of methane or through the degradation of complex organic matter that can subsequently be converted into methane. This is especially relevant in permafrost regions where climate change leads to thawing of permafrost, making high amounts of stored carbon bioavailable. Here we present the analysis of nineteen draft genomes recovered from a sediment core metagenome of the Polar Fox Lagoon, a thermokarst lake located on the Bykovsky Peninsula in Siberia, Russia, which is connected to the brackish Tiksi Bay. We show that the Bathyarchaeota in this lake are predominantly peptide degraders, producing reduced ferredoxin from the fermentation of peptides, while degradation pathways for plant-derived polymers were found to be incomplete. Several genomes encoded the potential for acetogenesis through the Wood-Ljungdahl pathway, but methanogenesis was determined to be unlikely due to the lack of genes encoding the key enzyme in methanogenesis, methyl-CoM reductase. Many genomes lacked a clear pathway for recycling reduced ferredoxin. Hydrogen metabolism was also hardly found: one type 4e [NiFe] hydrogenase was annotated in a single MAG and no [FeFe] hydrogenases were detected. Little evidence was found for syntrophy through formate or direct interspecies electron transfer, leaving a significant gap in our understanding of the metabolism of these organisms.}, language = {en} } @article{MelchertWischhoeferKnoblauchetal.2022, author = {Melchert, Jan Olaf and Wischh{\"o}fer, Philipp and Knoblauch, Christian and Eckhardt, Tim and Liebner, Susanne and Rethemeyer, Janet}, title = {Sources of CO2 Produced in Freshly Thawed Pleistocene-Age Yedoma Permafrost}, series = {Frontiers in Earth Science}, volume = {9}, journal = {Frontiers in Earth Science}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-6463}, doi = {10.3389/feart.2021.737237}, pages = {13}, year = {2022}, abstract = {The release of greenhouse gases from the large organic carbon stock in permafrost deposits in the circumarctic regions may accelerate global warming upon thaw. The extent of this positive climate feedback is thought to be largely controlled by the microbial degradability of the organic matter preserved in these sediments. In addition, weathering and oxidation processes may release inorganic carbon preserved in permafrost sediments as CO2, which is generally not accounted for. We used C-13 and C-14 analysis and isotopic mass balances to differentiate and quantify organic and inorganic carbon released as CO2 in the field from an active retrogressive thaw slump of Pleistocene-age Yedoma and during a 1.5-years incubation experiment. The results reveal that the dominant source of the CO2 released from freshly thawed Yedoma exposed as thaw mound is Pleistocene-age organic matter (48-80\%) and to a lesser extent modern organic substrate (3-34\%). A significant portion of the CO2 originated from inorganic carbon in the Yedoma (17-26\%). The mixing of young, active layer material with Yedoma at a site on the slump floor led to the preferential mineralization of this young organic carbon source. Admixtures of younger organic substrates in the Yedoma thaw mound were small and thus rapidly consumed as shown by lower contributions to the CO2 produced during few weeks of aerobic incubation at 4 degrees C corresponding to approximately one thaw season. Future CO2 fluxes from the freshly thawed Yedoma will contain higher proportions of ancient inorganic (22\%) and organic carbon (61-78\%) as suggested by the results at the end, after 1.5 years of incubation. The increasing contribution of inorganic carbon during the incubation is favored by the accumulation of organic acids from microbial organic matter degradation resulting in lower pH values and, in consequence, in inorganic carbon dissolution. Because part of the inorganic carbon pool is assumed to be of pedogenic origin, these emissions would ultimately not alter carbon budgets. The results of this study highlight the preferential degradation of younger organic substrates in freshly thawed Yedoma, if available, and a substantial release of CO2 from inorganic sources.}, language = {en} } @article{MitzscherlingMacLeanLipusetal.2022, author = {Mitzscherling, Julia and MacLean, Joana and Lipus, Daniel and Bartholom{\"a}us, Alexander and Mangelsdorf, Kai and Lipski, Andr{\´e} and Roddatis, Vladimir and Liebner, Susanne and Wagner, Dirk}, title = {Nocardioides alcanivorans sp. nov., a novel hexadecane-degrading species isolated from plastic waste}, series = {International journal of systematic and evolutionary microbiology}, volume = {72}, journal = {International journal of systematic and evolutionary microbiology}, number = {4}, publisher = {Microbiology Society}, address = {London}, issn = {1466-5026}, doi = {10.1099/ijsem.0.005319}, pages = {11}, year = {2022}, abstract = {Strain NGK65(T), a novel hexadecane degrading, non-motile, Gram-positive, rod-to-coccus shaped, aerobic bacterium, was isolated from plastic polluted soil sampled at a landfill. Strain NGK65(T) hydrolysed casein, gelatin, urea and was catalase-positive. It optimally grew at 28 degrees C. in 0-1\% NaCl and at pH 7.5-8.0. Glycerol, D-glucose, arbutin, aesculin, salicin, potassium 5-ketogluconate. sucrose, acetate, pyruvate and hexadecane were used as sole carbon sources. The predominant membrane fatty acids were iso-C-16:0 followed by iso-C(17:)0 and C-18:1 omega 9c. The major polar lipids were phosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and hydroxyphosphatidylinositol. The cell-wall peptidoglycan type was A3 gamma, with LL-diaminopimelic acid and glycine as the diagnostic amino acids. MK 8 (H-4) was the predominant menaquinone. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain NGK65(T) belongs to the genus Nocardioides (phylum Actinobacteria). appearing most closely related to Nocardioides daejeonensis MJ31(T) (98.6\%) and Nocardioides dubius KSL-104(T) (98.3\%). The genomic DNA G+C content of strain NGK65(T) was 68.2\%. Strain NGK65(T) and the type strains of species involved in the analysis had average nucleotide identity values of 78.3-71.9\% as well as digital DNA-DNA hybridization values between 22.5 and 19.7\%, which clearly indicated that the isolate represents a novel species within the genus Nocardioides. Based on phenotypic and molecular characterization, strain NGK65(T) can clearly be differentiated from its phylogenetic neighbours to establish a novel species, for which the name Nocardioides alcanivorans sp. nov. is proposed. The type strain is NGK65(T) (=DSM 113112(T)=NCCB 100846(T)).}, language = {en} }