@article{HohensteinKliegl2014, author = {Hohenstein, Sven and Kliegl, Reinhold}, title = {Semantic preview benefit during reading}, series = {Journal of experimental psychology : Learning, memory, and cognition}, volume = {40}, journal = {Journal of experimental psychology : Learning, memory, and cognition}, number = {1}, publisher = {American Psychological Association}, address = {Washington}, issn = {0278-7393}, doi = {10.1037/a0033670}, pages = {166 -- 190}, year = {2014}, abstract = {Word features in parafoveal vision influence eye movements during reading. The question of whether readers extract semantic information from parafoveal words was studied in 3 experiments by using a gaze-contingent display change technique. Subjects read German sentences containing 1 of several preview words that were replaced by a target word during the saccade to the preview (boundary paradigm). In the 1st experiment the preview word was semantically related or unrelated to the target. Fixation durations on the target were shorter for semantically related than unrelated previews, consistent with a semantic preview benefit. In the 2nd experiment, half the sentences were presented following the rules of German spelling (i.e., previews and targets were printed with an initial capital letter), and the other half were presented completely in lowercase. A semantic preview benefit was obtained under both conditions. In the 3rd experiment, we introduced 2 further preview conditions, an identical word and a pronounceable nonword, while also manipulating the text contrast. Whereas the contrast had negligible effects, fixation durations on the target were reliably different for all 4 types of preview. Semantic preview benefits were greater for pretarget fixations closer to the boundary (large preview space) and, although not as consistently, for long pretarget fixation durations (long preview time). The results constrain theoretical proposals about eye movement control in reading.}, language = {en} } @article{FernandezShalomKliegletal.2014, author = {Fernandez, Gerardo and Shalom, Diego E. and Kliegl, Reinhold and Sigman, Mariano}, title = {Eye movements during reading proverbs and regular sentences: the incoming word predictability effect}, series = {Language, cognition and neuroscience}, volume = {29}, journal = {Language, cognition and neuroscience}, number = {3}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {2327-3798}, doi = {10.1080/01690965.2012.760745}, pages = {260 -- 273}, year = {2014}, language = {en} } @article{RisseHohensteinKliegletal.2014, author = {Risse, Sarah and Hohenstein, Sven and Kliegl, Reinhold and Engbert, Ralf}, title = {A theoretical analysis of the perceptual span based on SWIFT simulations of the n+2 boundary paradigm}, series = {Visual cognition}, volume = {22}, journal = {Visual cognition}, number = {3-4}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {1350-6285}, doi = {10.1080/13506285.2014.881444}, pages = {283 -- 308}, year = {2014}, abstract = {Eye-movement experiments suggest that the perceptual span during reading is larger than the fixated word, asymmetric around the fixation position, and shrinks in size contingent on the foveal processing load. We used the SWIFT model of eye-movement control during reading to test these hypotheses and their implications under the assumption of graded parallel processing of all words inside the perceptual span. Specifically, we simulated reading in the boundary paradigm and analysed the effects of denying the model to have valid preview of a parafoveal word n + 2 two words to the right of fixation. Optimizing the model parameters for the valid preview condition only, we obtained span parameters with remarkably realistic estimates conforming to the empirical findings on the size of the perceptual span. More importantly, the SWIFT model generated parafoveal processing up to word n + 2 without fitting the model to such preview effects. Our results suggest that asymmetry and dynamic modulation are plausible properties of the perceptual span in a parallel word-processing model such as SWIFT. Moreover, they seem to guide the flexible distribution of processing resources during reading between foveal and parafoveal words.}, language = {en} } @article{PanYanLaubrocketal.2014, author = {Pan, Jinger and Yan, Ming and Laubrock, Jochen and Shu, Hua and Kliegl, Reinhold}, title = {Saccade-target selection of dyslexic children when reading Chinese}, series = {Vision research : an international journal for functional aspects of vision.}, volume = {97}, journal = {Vision research : an international journal for functional aspects of vision.}, publisher = {Elsevier}, address = {Oxford}, issn = {0042-6989}, doi = {10.1016/j.visres.2014.01.014}, pages = {24 -- 30}, year = {2014}, abstract = {This study investigates the eye movements of dyslexic children and their age-matched controls when reading Chinese. Dyslexic children exhibited more and longer fixations than age-matched control children, and an increase of word length resulted in a greater increase in the number of fixations and gaze durations for the dyslexic than for the control readers. The report focuses on the finding that there was a significant difference between the two groups in the fixation landing position as a function of word length in single-fixation cases, while there was no such difference in the initial fixation of multi-fixation cases. We also found that both groups had longer incoming saccade amplitudes while the launch sites were closer to the word in single fixation cases than in multi-fixation cases. Our results suggest that dyslexic children's inefficient lexical processing, in combination with the absence of orthographic word boundaries in Chinese, leads them to select saccade targets at the beginning of words conservatively. These findings provide further evidence for parafoveal word segmentation during reading of Chinese sentences.}, language = {en} } @article{RisseKliegl2014, author = {Risse, Sarah and Kliegl, Reinhold}, title = {Dissociating preview validity and preview difficulty in parafoveal processing of word n+1 during reading}, series = {Journal of experimental psychology : Human perception and performance}, volume = {40}, journal = {Journal of experimental psychology : Human perception and performance}, number = {2}, publisher = {American Psychological Association}, address = {Washington}, issn = {0096-1523}, doi = {10.1037/a0034997}, pages = {653 -- 668}, year = {2014}, abstract = {Many studies have shown that previewing the next word n + 1 during reading leads to substantial processing benefit (e.g., shorter word viewing times) when this word is eventually fixated. However, evidence of such preprocessing in fixations on the preceding word n when in fact the information about the preview is acquired is far less consistent. A recent study suggested that such effects may be delayed into fixations on the next word n + 1 (Risse \& Kliegl, 2012). To investigate the time course of parafoveal information-acquisition on the control of eye movements during reading, we conducted 2 gaze-contingent display-change experiments and orthogonally manipulated the processing difficulty (i.e., word frequency) of an n + 1 preview word and its validity relative to the target word. Preview difficulty did not affect fixation durations on the pretarget word n but on the target word n + 1. In fact, the delayed preview-difficulty effect was almost of the same size as the preview benefit associated with the n + 1 preview validity. Based on additional results from quantile-regression analyses on the time course of the 2 preview effects, we discuss consequences as to the integration of foveal and parafoveal information and potential implications for computational models of eye guidance in reading.}, language = {en} } @article{JuengerKlieglOberauer2014, author = {J{\"u}nger, Elisabeth and Kliegl, Reinhold and Oberauer, Klaus}, title = {No evidence for feature overwriting in visual working memory}, series = {Memory}, volume = {22}, journal = {Memory}, number = {4}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {0965-8211}, pages = {374 -- 389}, year = {2014}, language = {en} } @article{HofmannDambacherJacobsetal.2014, author = {Hofmann, Markus J. and Dambacher, Michael and Jacobs, Arthur M. and Kliegl, Reinhold and Radach, Ralph and Kuchinke, Lars and Plichta, Michael M. and Fallgatter, Andreas J. and Herrmann, Martin J.}, title = {Occipital and orbitofrontal hemodynamics during naturally paced reading: An fNIRS study}, series = {NeuroImage : a journal of brain function}, volume = {94}, journal = {NeuroImage : a journal of brain function}, publisher = {Elsevier}, address = {San Diego}, issn = {1053-8119}, doi = {10.1016/j.neuroimage.2014.03.014}, pages = {193 -- 202}, year = {2014}, abstract = {Humans typically read at incredibly fast rates, because they predict likely occurring words from a given context. Here, we used functional near-infrared spectroscopy (fNIRS) to track the ultra-rapid hemodynamic responses of words presented every 280 ms in a naturally paced sentence context. We found a lower occipital deoxygenation to unpredictable than to predictable words. The greater hemodynamic responses to unexpected words suggest that the visual features of expected words have been pre-activated previous to stimulus presentation. Second, we tested opposing theoretical proposals about the role of the medial orbitofrontal cortex (OFC): Either OFC may respond to the breach of expectation; or OFC is activated when the present stimulus matches the prediction. A significant interaction between word frequency and predictability indicated OFC responses to breaches of expectation for low- but not for high-frequency words: OFC is sensitive to both, bottom-up processing as mediated by word frequency, as well as top-down predictions. Particularly, when a rare word is unpredictable, OFC becomes active. Finally, we discuss how a high temporal resolution can help future studies to disentangle the hemodynamic responses of single trials in such an ultra-rapid event succession as naturally paced reading. (C) 2014 Elsevier Inc. All rights reserved.}, language = {en} } @article{YanZhouShuetal.2014, author = {Yan, Ming and Zhou, Wei and Shu, Hua and Yusupu, Rizwangul and Miao, Dongxia and Kruegel, Andre and Kliegl, Reinhold}, title = {Eye movements guided by morphological structure: Evidence from the Uighur language}, series = {Cognition : international journal of cognitive science}, volume = {132}, journal = {Cognition : international journal of cognitive science}, number = {2}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0010-0277}, doi = {10.1016/j.cognition.2014.03.008}, pages = {181 -- 215}, year = {2014}, abstract = {It is generally accepted that low-level features (e.g., inter-word spaces) are responsible for saccade-target selection in eye-movement control during reading. In two experiments using Uighur script known for its rich suffixes, we demonstrate that, in addition to word length and launch site, the number of suffixes influences initial landing positions. We also demonstrate an influence of word frequency. These results are difficult to explain purely by low-level guidance of eye movements and indicate that due to properties specific to Uighur script low-level visual information and high-level information such as morphological structure of parafoveal words jointly influence saccade programming. (C) 2014 Elsevier B.V. All rights reserved.}, language = {en} }