@phdthesis{Lian2023, author = {Lian, Tingting}, title = {Efficient activation of peroxymonosulfate by carbon-based catalysts for water purification}, school = {Universit{\"a}t Potsdam}, pages = {167}, year = {2023}, abstract = {The increasing global population has led to a growing demand for cost-effective and eco-friendly methods of water purification. This demand has reached a peak due to the increasing presence of impurities and pollutants in water and a growing awareness of waterborne diseases. Advanced oxidation processes (AOPs) are effective methods to address these challenges, due to the generation of highly reactive radicals, such as sulfate radical (SO4•-), hydroxyl radical (•OH), and/or superoxide radical (•O2-) in oxidation reactions. Relative to conventional hydrogen peroxide (H2O2)-based AOPs for wastewater treatment, the persulfate-related AOPs are receiving increasing attention over the past decades, due to their stronger oxidizing capability and a wider pH working window. Further deployment of the seemingly plausible technology as an alternative for the well-established one in industry, however, necessitates a careful evaluation of compounding factors, such as water matrix effects, toxicological consequences, costs, and engineering challenges, etc. To this end, rational design of efficient and environmentally friendly catalysts constitutes an indispensable pathway to advance persulfate activation efficacy and to elucidate the mechanisms in AOPs, the combined endeavors are expected to provide insightful understanding and guidelines for future studies in wastewater treatment. A dozens of transition metal-based catalysts have been developed for persulfate-related AOPs, while the undesirable metal leaching and poor stability in acidic conditions have been identified as major obstacles. Comparatively, the carbonaceous materials are emerging as alternative candidates, which are characterized by metal-free nature, wide availability, and exceptional resistance to acid and alkali, as well as tunable physicochemical and electronic properties, the combined merits make them an attractive option to overcome the aforementioned limitations in metal-based catalytic systems. This dissertation aims at developing novel carbonaceous materials to boost the activity in peroxymonosulfate (PMS) activation processes. Functionalized carbon materials with metal particles or heteroatoms were constructed and further evaluated in terms of their ability to activate PMS for AOPs. The main contents of this thesis are summarized as follows: (1) Iron oxide-loaded biochar: improving stability and alleviating metal leakage Metal leaching constitutes one of the main drawbacks in using transition metals as PMS activators, which is accompanied by the generation of metal-containing sludge, potentially leading to secondary pollution. Meanwhile, the metal nanoparticles are prone to aggregate, causing rapid decay of catalytic performance. The use of carbons as supports for transition metals could mitigate these deficiencies, because the interaction between metals and carbons could in turn disperse and stabilize metal nanoparticles, thus suppressing the metal leaching. In this work, the environmentally benign lignin with its abundant phenolic groups, which is well known to serve as carbon source with high yields and flexibility, was utilized to load Fe ions. The facile low-temperature pre-treatment pyrolytic strategy was employed to construct a green catalyst with iron oxides embedded in Kraft-lignin-derived biochar (termed as γ-Fe2O3@KC). The γ-Fe2O3@KC was capable of activating PMS to generate stable non-radical species (1O2 and Fe (V)=O) and to enhance electron transfer efficiency. A surface-bound reactive complex (catalyst-PMS*) was identified by electrochemical characterizations and discussed with primary surface-bound radical pairs to explain the contradictions between quenching and EPR detection results. The system also showed encouraging reusability for at least 5 times and high stability at pH 3-9. The low concentration of iron in γ-Fe2O3@KC/PMS system implied that the carbon scaffold of biochar substantially alleviated metal leakage. (2) MOF-derived nanocarbon: new carbon crystals Traditional carbon materials are of rather moderate performance in activation PMS, due to the poor electron transfer capacity within the amorphous structure and limited active sites for PMS adsorption. Herein, we established crystalline nanocarbon materials via a simple NaCl-templated strategy using the monoclinic zeolitic imidazolate framework-8 (ZIF-8) sealed with NaCl crystals as the precursors. Specifically, NaCl captured dual advantages in serving as structure-directing agent during hydrolysis and protective salt reactor to facilitate phase transformation during carbonization. The structure-directing agent NaCl provided a protective and confined space for the evolution of MOF upon carbonization, which led to high doping amounts of nitrogen (N) and oxygen elements (O) in carbon framework (N: 14.16 wt\%, O: 9.6 wt\%) after calcination at a high temperature of 950 oC. We found that N-O co-doping can activate the chemically inert carbon network and the nearby sp2-hybridized carbon atoms served as active sites for adsorption and activation. Besides, the highly crystallized structure with well-established carbon channels around activated carbon atoms could significantly accelerate electron transfer process after initial adsorption of PMS. As such, this crystalline nanocarbon exhibited excellent catalytic kinetics for various pollutants. (3) MOF-derived 2D carbon layers: enhanced mass/electron transfer The two-dimensional (2D) configuration of carbon-based nanosheets with inherent nanochannels and abundant active sites residing on the layer edges or in between the layers, allowed the accessible interaction and close contact between the substrates and reactants, as well as the dramatically improved electron- and mass-transfer kinetics. In this regard, we developed dual-templating strategy to afford 2D assembly of the crystalline carbons, which found efficiency in reinforcing the interactions between the catalyst surface and foreign pollutants. Specifically, we found that the ice crystals and NaCl promoted the evolution of MOF in a 2D fashion during the freezing casting stage, while the later further allowed the formation of a graphitic surface at high calcination temperature, by virtue of the templating effect of molten salt. Due to the highly retained co-doping amounts, N and O heteroatoms created abundant active sites for PMS activation, the 2D configuration of carbon-based nanosheets enable efficient interaction of PMS and pollutants on the surface, which further boosted the kinetics of degradation.}, language = {en} } @misc{UnuabonahTaubert2014, author = {Unuabonah, Emmanuel I. and Taubert, Andreas}, title = {Clay-polymer nanocomposites (CPNs): Adsorbents of the future for water treatment}, series = {Applied clay science : an international journal on the application and technology of clays and clay minerals}, volume = {99}, journal = {Applied clay science : an international journal on the application and technology of clays and clay minerals}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0169-1317}, doi = {10.1016/j.clay.2014.06.016}, pages = {83 -- 92}, year = {2014}, abstract = {A class of adsorbents currently receiving growing attention is the clay-polymer nanocomposite (CPN) adsorbents. CPNs effectively treat water by adsorption and flocculation of both inorganic and organic micropollutants from aqueous solutions. Some of these CPNs - when modified with biocides - also have the ability to efficiently remove microorganisms such as Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Candida albicans from water. CPNs are far more easily recovered from aqueous media than neat clay. They also exhibit far better treatment times than either polymer or clay adsorbents. They have higher adsorption capacity and better life cycles compared with clay alone. CPNs therefore show an excellent potential as highly efficient water and waste treatment agents. This article reviews the various CPNs that have been prepared recently and used as adsorbents in the removal of micropollutants (inorganic, organic and biological) from aqueous solutions. A special focus is placed on CPNs that are not only interesting from an academic point of view but also effectively reduce the concentration of micropollutants in water to safe limits and also on new developments bordering on CPN use as water treatment agent that have not yet realized their full potential. (C) 2014 Elsevier B.V. All rights reserved.}, language = {en} } @article{UnuabonahGuenterWeberetal.2013, author = {Unuabonah, Emmanuel I. and G{\"u}nter, Christina and Weber, Jens and Lubahn, Susanne and Taubert, Andreas}, title = {Hybrid Clay - a new highly efficient adsorbent for water treatment}, series = {ACS sustainable chemistry \& engineering}, volume = {1}, journal = {ACS sustainable chemistry \& engineering}, number = {8}, publisher = {American Chemical Society}, address = {Washington}, issn = {2168-0485}, doi = {10.1021/sc400051y}, pages = {966 -- 973}, year = {2013}, abstract = {New hybrid clay adsorbent based on kaolinite clay and Carica papaya seeds with improved cation exchange capacity (CEC), rate of heavy metal ion uptake, and adsorption capacity for heavy metal ions were prepared. The CEC of the new material is ca. 75 meq/100 g in spite of the unexpectedly low surface area (approximate to 19 m(2)/g). Accordingly, the average particle size of the hybrid clay adsorbent decreased from over 200 to 100 pm. The hybrid clay adsorbent is a highly efficient adsorbent for heavy metals. With an initial metal concentration of 1 mg/L, the hybrid clay adsorbent reduces the Cd2+, Ni2+, and Pb2+ concentration in aqueous solution to <= 4, <= 7 and <= 20 mu g/L, respectively, from the first minute to over 300 min using a fixed bed containing 2 g of adsorbent and a flow rate of approximate to 7 mL/min. These values are (with the exception of Pb2+) in line with the WHO permissible limits for heavy metal ions. In a cocktail solution of Cd2+, and Ni2+, the hybrid clay shows a reduced rate of uptake but an increased adsorption capacity. The CEC data suggest that the adsorption of Pb2+, Cd2+, and Ni2+ on the hybrid clay adsorbent is essentially due to ion exchange. This hybrid clay adsorbent is prepared from materials that are abundant and by a simple means that is sustainable, easily recovered from aqueous solution, nonbiodegradable (unlike numerous biosorbent), and easily regenerated and is a highly efficient alternative to activated carbon for water treatment.}, language = {en} }