@article{GraefGrafeMeyeretal.2021, author = {Gr{\"a}f, Ralph and Grafe, Marianne and Meyer, Irene and Mitic, Kristina and Pitzen, Valentin}, title = {The dictyostelium centrosome}, series = {Cells : open access journal}, volume = {10}, journal = {Cells : open access journal}, number = {10}, publisher = {MDPI}, address = {Basel}, issn = {2073-4409}, doi = {10.3390/cells10102657}, pages = {26}, year = {2021}, abstract = {The centrosome of Dictyostelium amoebae contains no centrioles and consists of a cylindrical layered core structure surrounded by a corona harboring microtubule-nucleating gamma-tubulin complexes. It is the major centrosomal model beyond animals and yeasts. Proteomics, protein interaction studies by BioID and superresolution microscopy methods led to considerable progress in our understanding of the composition, structure and function of this centrosome type. We discuss all currently known components of the Dictyostelium centrosome in comparison to other centrosomes of animals and yeasts.}, language = {en} } @article{PitzenSanderBaumannetal.2021, author = {Pitzen, Valentin and Sander, Sophia and Baumann, Otto and Gr{\"a}f, Ralph and Meyer, Irene}, title = {Cep192, a novel missing link between the centrosomal core and corona in Dictyostelium amoebae}, series = {Cells : open access journal}, volume = {10}, journal = {Cells : open access journal}, number = {9}, publisher = {MDPI}, address = {Basel}, issn = {2073-4409}, doi = {10.3390/cells10092384}, pages = {19}, year = {2021}, abstract = {The Dictyostelium centrosome is a nucleus-associated body with a diameter of approx. 500 nm. It contains no centrioles but consists of a cylindrical layered core structure surrounded by a microtubule-nucleating corona. At the onset of mitosis, the corona disassembles and the core structure duplicates through growth, splitting, and reorganization of the outer core layers. During the last decades our research group has characterized the majority of the 42 known centrosomal proteins. In this work we focus on the conserved, previously uncharacterized Cep192 protein. We use superresolution expansion microscopy (ExM) to show that Cep192 is a component of the outer core layers. Furthermore, ExM with centrosomal marker proteins nicely mirrored all ultrastructurally known centrosomal substructures. Furthermore, we improved the proximity-dependent biotin identification assay (BioID) by adapting the biotinylase BioID2 for expression in Dictyostelium and applying a knock-in strategy for the expression of BioID2-tagged centrosomal fusion proteins. Thus, we were able to identify various centrosomal Cep192 interaction partners, including CDK5RAP2, which was previously allocated to the inner corona structure, and several core components. Studies employing overexpression of GFP-Cep192 as well as depletion of endogenous Cep192 revealed that Cep192 is a key protein for the recruitment of corona components during centrosome biogenesis and is required to maintain a stable corona structure.}, language = {en} }