@article{LeonhardtGerhardtHoeppneretal.2016, author = {Leonhardt, Helmar and Gerhardt, Matthias and Hoeppner, Nadine and Kr{\"u}ger, Kirsten and Tarantola, Marco and Beta, Carsten}, title = {Cell-substrate impedance fluctuations of single amoeboid cells encode cell-shape and adhesion dynamics}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {93}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, publisher = {American Physical Society}, address = {College Park}, issn = {2470-0045}, doi = {10.1103/PhysRevE.93.012414}, pages = {8}, year = {2016}, abstract = {We show systematic electrical impedance measurements of single motile cells on microelectrodes. Wild-type cells and mutant strains were studied that differ in their cell-substrate adhesion strength. We recorded the projected cell area by time-lapse microscopy and observed irregular oscillations of the cell shape. These oscillations were correlated with long-term variations in the impedance signal. Superposed to these long-term trends, we observed fluctuations in the impedance signal. Their magnitude clearly correlated with the adhesion strength, suggesting that strongly adherent cells display more dynamic cell-substrate interactions.}, language = {en} } @article{Beta2016, author = {Beta, Carsten}, title = {To turn or not to turn?}, series = {NEW JOURNAL OF PHYSICS}, volume = {18}, journal = {NEW JOURNAL OF PHYSICS}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1367-2630}, doi = {10.1088/1367-2630/18/5/051003}, pages = {1 -- 17}, year = {2016}, abstract = {Bacteria typically swim in straight runs, interruped by sudden turning events. In particular, some species are limited to a reversal in the swimming direction as the only turning maneuver at their disposal. In a recent article, Grossmann et al (2016 New J. Phys. 18 043009) introduce a theoretical framework to analyze the diffusive properties of active particles following this type of run-and-reverse pattern. Based on a stochastic clock model to mimic the regulatory pathway that triggers reversal events, they show that a run-and-reverse swimmer can optimize its diffusive spreading by tuning the reversal rate according to the level of rotational noise. With their approach, they open up promising new perspectives of how to incorporate the dynamics of intracellular signaling into coarse-grained active particle descriptions.}, language = {en} } @article{NegretePumirHsuetal.2016, author = {Negrete, Jose and Pumir, Alain and Hsu, Hsin-Fang and Westendorf, Christian and Tarantola, Marco and Beta, Carsten and Bodenschatz, Eberhard}, title = {Noisy Oscillations in the Actin Cytoskeleton of Chemotactic Amoeba}, series = {Physical review letters}, volume = {117}, journal = {Physical review letters}, publisher = {American Physical Society}, address = {College Park}, issn = {0031-9007}, doi = {10.1103/PhysRevLett.117.148102}, pages = {5}, year = {2016}, abstract = {Biological systems with their complex biochemical networks are known to be intrinsically noisy. Here we investigate the dynamics of actin polymerization of amoeboid cells, which are close to the onset of oscillations. We show that the large phenotypic variability in the polymerization dynamics can be accurately captured by a generic nonlinear oscillator model in the presence of noise. We determine the relative role of the noise with a single dimensionless, experimentally accessible parameter, thus providing a quantitative description of the variability in a population of cells. Our approach, which rests on a generic description of a system close to a Hopf bifurcation and includes the effect of noise, can characterize the dynamics of a large class of noisy systems close to an oscillatory instability.}, language = {en} } @misc{BerensteinBetaDeDecker2016, author = {Berenstein, Igal and Beta, Carsten and De Decker, Yannick}, title = {Comment on "Flow-induced arrest of spatiotemporal chaos and transition to a stationary pattern in the Gray-Scott model"}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {94}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, publisher = {American Physical Society}, address = {College Park}, issn = {2470-0045}, doi = {10.1103/PhysRevE.94.046201}, pages = {3}, year = {2016}, abstract = {In this Comment, we review the results of pattern formation in a reaction-diffusion-advection system following the kinetics of the Gray-Scott model. A recent paper by Das [Phys. Rev. E 92, 052914 (2015)] shows that spatiotemporal chaos of the intermittency type can disappear as the advective flow is increased. This study, however, refers to a single point in the space of kinetic parameters of the original Gray-Scott model. Here we show that the wealth of patterns increases substantially as some of these parameters are changed. In addition to spatiotemporal intermittency, defect-mediated turbulence can also be found. In all cases, however, the chaotic behavior is seen to disappear as the advective flow is increased, following a scenario similar to what was reported in our earlier work [I. Berenstein and C. Beta, Phys. Rev. E 86, 056205 (2012)] as well as by Das. We also point out that a similar phenomenon can be found in other reaction-diffusion-advection models, such as the Oregonator model for the Belousov-Zhabotinsky reaction under flow conditions.}, language = {en} } @misc{NiedlBerensteinBeta2016, author = {Niedl, Robert Raimund and Berenstein, Igal and Beta, Carsten}, title = {How imperfect mixing and differential diffusion accelerate the rate of nonlinear reactions in microfluidic channels}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-95810}, pages = {6451 -- 6457}, year = {2016}, abstract = {In this paper, we show experimentally that inside a microfluidic device, where the reactants are segregated, the reaction rate of an autocatalytic clock reaction is accelerated in comparison to the case where all the reactants are well mixed. We also find that, when mixing is enhanced inside the microfluidic device by introducing obstacles into the flow, the clock reaction becomes slower in comparison to the device where mixing is less efficient. Based on numerical simulations, we show that this effect can be explained by the interplay of nonlinear reaction kinetics (cubic autocatalysis) and differential diffusion, where the autocatalytic species diffuses slower than the substrate.}, language = {en} } @article{NiedlBerensteinBeta2016, author = {Niedl, Robert Raimund and Berenstein, Igal and Beta, Carsten}, title = {How imperfect mixing and differential diffusion accelerate the rate of nonlinear reactions in microfluidic channels}, series = {Physical chemistry, chemical physics : PCCP ; a journal of European Chemical Societies}, volume = {18}, journal = {Physical chemistry, chemical physics : PCCP ; a journal of European Chemical Societies}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c6cp00224b}, pages = {6451 -- 6457}, year = {2016}, abstract = {In this paper, we show experimentally that inside a microfluidic device, where the reactants are segregated, the reaction rate of an autocatalytic clock reaction is accelerated in comparison to the case where all the reactants are well mixed. We also find that, when mixing is enhanced inside the microfluidic device by introducing obstacles into the flow, the clock reaction becomes slower in comparison to the device where mixing is less efficient. Based on numerical simulations, we show that this effect can be explained by the interplay of nonlinear reaction kinetics (cubic autocatalysis) and differential diffusion, where the autocatalytic species diffuses slower than the substrate.}, language = {en} }