@misc{RheinwaltBookhagen2018, author = {Rheinwalt, Aljoscha and Bookhagen, Bodo}, title = {Network-based flow accumulation for point clouds}, series = {Remote Sensing for Agriculture, Ecosystems, and Hydrology XX}, volume = {10783}, journal = {Remote Sensing for Agriculture, Ecosystems, and Hydrology XX}, publisher = {SPIE-INT Society of Photo-Optical Instrumentation Engineers}, address = {Bellingham}, isbn = {978-1-5106-2150-3}, issn = {0277-786X}, doi = {10.1117/12.2318424}, pages = {12}, year = {2018}, abstract = {Point clouds provide high-resolution topographic data which is often classified into bare-earth, vegetation, and building points and then filtered and aggregated to gridded Digital Elevation Models (DEMs) or Digital Terrain Models (DTMs). Based on these equally-spaced grids flow-accumulation algorithms are applied to describe the hydrologic and geomorphologic mass transport on the surface. In this contribution, we propose a stochastic point-cloud filtering that, together with a spatial bootstrap sampling, allows for a flow accumulation directly on point clouds using Facet-Flow Networks (FFN). Additionally, this provides a framework for the quantification of uncertainties in point-cloud derived metrics such as Specific Catchment Area (SCA) even though the flow accumulation itself is deterministic.}, language = {en} } @article{RheinwahltGoswamiBookhagen2019, author = {Rheinwahlt, Aljoscha and Goswami, Bedartha and Bookhagen, Bodo}, title = {A network-based flow accumulation algorithm for point clouds}, series = {Journal of geophysical research : Earth surface}, volume = {124}, journal = {Journal of geophysical research : Earth surface}, number = {7}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9003}, doi = {10.1029/2018JF004827}, pages = {2013 -- 2033}, year = {2019}, abstract = {Flow accumulation algorithms estimate the steady state of flow on real or modeled topographic surfaces and are crucial for hydrological and geomorphological assessments, including delineation of river networks, drainage basins, and sediment transport processes. Existing flow accumulation algorithms are typically designed to compute flows on regular grids and are not directly applicable to arbitrarily sampled topographic data such as lidar point clouds. In this study we present a random sampling scheme that generates homogeneous point densities, in combination with a novel flow path tracing approach-the Facet-Flow Network (FFN)-that estimates flow accumulation in terms of specific catchment area (SCA) on triangulated surfaces. The random sampling minimizes biases due to spatial sampling and the FFN allows for direct flow estimation from point clouds. We validate our approach on a Gaussian hill surface and study the convergence of its SCA compared to the analytical solution. Here, our algorithm outperforms the multiple flow direction algorithm, which is optimized for divergent surfaces. We also compute the SCA of a 6-km(2)-steep, vegetated catchment on Santa Cruz Island, California, based on airborne lidar point-cloud data. Point-cloud-based SCA values estimated by our method compare well with those estimated by the D-infinity or multiple flow direction algorithm on gridded data. The advantage of computing SCA from point clouds becomes relevant especially for divergent topography and for small drainage areas: These are depicted with much more detail due to the higher sampling density of point clouds.}, language = {en} } @article{SchwanghartGroomKuhnetal.2013, author = {Schwanghart, Wolfgang and Groom, Geoff and Kuhn, Nikolaus J. and Heckrath, Goswin}, title = {Flow network derivation from a high resolution DEM in a low relief, agrarian landscape}, series = {Earth surface processes and landforms : the journal of the British Geomorphological Research Group}, volume = {38}, journal = {Earth surface processes and landforms : the journal of the British Geomorphological Research Group}, number = {13}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0197-9337}, doi = {10.1002/esp.3452}, pages = {1576 -- 1586}, year = {2013}, abstract = {Digital flow networks derived from digital elevation models (DEMs) sensitively react to errors due to measurement, data processing and data representation. Since high-resolution DEMs are increasingly used in geomorphological and hydrological research, automated and semi-automated procedures to reduce the impact of such errors on flow networks are required. One such technique is stream-carving, a hydrological conditioning technique to ensure drainage connectivity in DEMs towards the DEM edges. Here we test and modify a state-of-the-art carving algorithm for flow network derivation in a low-relief, agricultural landscape characterized by a large number of spurious, topographic depressions. Our results show that the investigated algorithm reconstructs a benchmark network insufficiently in terms of carving energy, distance and a topological network measure. The modification to the algorithm that performed best, combines the least-cost auxiliary topography (LCAT) carving with a constrained breaching algorithm that explicitly takes automatically identified channel locations into account. We applied our methods to a low relief landscape, but the results can be transferred to flow network derivation of DEMs in moderate to mountainous relief in situations where the valley bottom is broad and flat and precise derivations of the flow networks are needed.}, language = {en} }