@article{KiemelDeCahsanParaskevopoulouetal.2022, author = {Kiemel, Katrin and De Cahsan, Binia and Paraskevopoulou, Sofia and Weithoff, Guntram and Tiedemann, Ralph}, title = {Mitochondrial genomes of the freshwater monogonont rotifer Brachionus fernandoi and of two additional B. calyciflorus sensu stricto lineages from Germany and the USA (Rotifera, Brachionidae)}, series = {Mitochondrial DNA. Part B-Resources}, volume = {7}, journal = {Mitochondrial DNA. Part B-Resources}, number = {4}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {2380-2359}, doi = {10.1080/23802359.2022.2060765}, pages = {646 -- 648}, year = {2022}, abstract = {The Brachionus calyciflorus species complex was recently subdivided into four species, but genetic resources to resolve phylogenetic relationships within this complex are still lacking. We provide two complete mitochondrial (mt) genomes from B. calyciflorus sensu stricto (Germany, USA) and the mt coding sequences (cds) from a German B. fernandoi. Phylogenetic analysis placed our B. calyciflorus sensu stricto strains close to the published genomes of B. calyciflorus, forming the putative sister species to B. fernandoi. Global representatives of B. calyciflorus sensu stricto (i.e. Europe, USA, and China) are genetically closer related to each other than to B. fernandoi (average pairwise nucleotide diversity 0.079 intraspecific vs. 0.254 interspecific).}, language = {en} } @article{ParaskevopoulouTiedemannWeithoff2018, author = {Paraskevopoulou, Sofia and Tiedemann, Ralph and Weithoff, Guntram}, title = {Differential response to heat stress among evolutionary lineages of an aquatic invertebrate species complex}, series = {Biology letters}, volume = {14}, journal = {Biology letters}, number = {11}, publisher = {Royal Society}, address = {London}, issn = {1744-9561}, doi = {10.1098/rsbl.2018.0498}, pages = {5}, year = {2018}, abstract = {Under global warming scenarios, rising temperatures can constitute heat stress to which species may respond differentially. Within a described species, knowledge on cryptic diversity is of further relevance, as different lineages/cryptic species may respond differentially to environmental change. The Brachionus calyciflorus species complex (Rotifera), which was recently described using integrative taxonomy, is an essential component of aquatic ecosystems. Here, we tested the hypothesis that these (formerly cryptic) species differ in their heat tolerance. We assigned 47 clones with nuclear ITS1 (nuITS1) and mitochondrial COI (mtCOI) markers to evolutionary lineages, now named B. calyciflorus sensu stricto (s.s.) and B. fernandoi. We selected 15 representative clones and assessed their heat tolerance as a bi-dimensional phenotypic trait affected by both the intensity and duration of heat stress. We found two distinct groups, with B. calyciflorus s.s. clones having higher heat tolerance than the novel species B. fernandoi. This apparent temperature specialization among former cryptic species underscores the necessity of a sound species delimitation and assignment, when organismal responses to environmental changes are investigated.}, language = {en} } @article{CoramanDietzHempeletal.2019, author = {Coraman, Emrah and Dietz, Christian and Hempel, Elisabeth and Ghazaryan, Astghik and Levin, Eran and Presetnik, Primoz and Zagmajster, Maja and Mayer, Frieder}, title = {Reticulate evolutionary history of a Western Palaearctic Bat Complex explained by multiple mtDNA introgressions in secondary contacts}, series = {Journal of biogeography}, volume = {46}, journal = {Journal of biogeography}, number = {2}, publisher = {Wiley}, address = {Hoboken}, issn = {0305-0270}, doi = {10.1111/jbi.13509}, pages = {343 -- 354}, year = {2019}, abstract = {Aim There is an increasing evidence showing that species within various taxonomic groups have reticulate evolutionary histories with several cases of introgression events. Investigating the phylogeography of species complexes can provide insight into these introgressions, and when and where these hybridizations occurred. In this study, we investigate the biogeography of a widely distributed Western Palaearctic bat species complex, namely Myotis nattereri sensu lato. This complex exhibits high genetic diversity and in its western distribution range is composed of deeply diverged genetical lineages. However, little is known about the genetic structure of the eastern populations. We also infer the conservation and taxonomical implications of the identified genetic divergences. Taxon Myotis nattereri sensu lato including M. schaubi. Location Western Palaearctic. Methods We analysed 161 specimens collected from 67 locations and sequenced one mitochondrial and four nuclear DNA markers, and combined these with the available GenBank sequences. We used haplotype networks, PCA, t-SNE and Bayesian clustering algorithms to investigate the population structure and Bayesian trees to infer the phylogenetic relationship of the lineages. Results We identified deeply divergent genetical lineages. In some cases, nuclear and mitochondrial markers were discordant, which we interpret are caused by hybridization between lineages. We identified three such introgression events. These introgressions occurred when spatially separated lineages came into contact after range expansions. Based on the genetic distinction of the identified lineages, we suggest a revision in the taxonomy of this species group with two possible new species: M. hoveli and M. tschuliensis. Main conclusions Our findings suggest that the M. nattereri complex has a reticulate evolutionary history with multiple cases of hybridizations between some of the identified lineages.}, language = {en} }