@article{vonHippelStoofLeichsenringSchulteetal.2022, author = {von Hippel, Barbara and Stoof-Leichsenring, Kathleen R. and Schulte, Luise and Seeber, Peter Andreas and Epp, Laura Saskia and Biskaborn, Boris K. and Diekmann, Bernhard and Melles, Martin and Pestryakova, Luidmila Agafyevna and Herzschuh, Ulrike}, title = {Long-term funguseplant covariation from multi-site sedimentary ancient DNA metabarcoding}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {295}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2022.107758}, pages = {18}, year = {2022}, abstract = {Climate change has a major impact on arctic and boreal terrestrial ecosystems as warming leads to northward treeline shifts, inducing consequences for heterotrophic organisms associated with the plant taxa. To unravel ecological dependencies, we address how long-term climatic changes have shaped the co-occurrence of plants and fungi across selected sites in Siberia. We investigated sedimentary ancient DNA from five lakes spanning the last 47,000 years, using the ITS1 marker for fungi and the chloroplast P6 loop marker for vegetation metabarcoding. We obtained 706 unique fungal operational taxonomic units (OTUs) and 243 taxa for the plants. We show higher OTU numbers in dry forest tundra as well as boreal forests compared to wet southern tundra. The most abundant fungal taxa in our dataset are Pseudeurotiaceae, Mortierella, Sordariomyceta, Exophiala, Oidiodendron, Protoventuria, Candida vartiovaarae, Pseudeurotium, Gryganskiella fimbricystis, and Tricho-sporiella cerebriformis. The overall fungal composition is explained by the plant composition as revealed by redundancy analysis. The fungal functional groups show antagonistic relationships in their climate susceptibility. The advance of woody taxa in response to past warming led to an increase in the abun-dance of mycorrhizae, lichens, and parasites, while yeast and saprotroph distribution declined. We also show co-occurrences between Salicaceae, Larix, and Alnus and their associated pathogens and detect higher mycorrhizal fungus diversity with the presence of Pinaceae. Under future warming, we can expect feedbacks between fungus composition and plant diversity changes which will affect forest advance, species diversity, and ecosystem stability in arctic regions.}, language = {en} } @phdthesis{Courtin2023, author = {Courtin, J{\´e}r{\´e}my}, title = {Biodiversity changes in Siberia between quaternary glacial and interglacial stages}, doi = {10.25932/publishup-59584}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-595847}, school = {Universit{\"a}t Potsdam}, pages = {vi, 199}, year = {2023}, abstract = {Der vom Menschen verursachte Klimawandel wirkt sich auf die biologische Vielfalt der Erde und damit auf die {\"O}kosysteme und ihre Leistungen aus. Die {\"O}kosysteme in den hohen Breitengraden sind aufgrund der verst{\"a}rkten Erw{\"a}rmung an den Polen noch st{\"a}rker betroffen als der Rest der n{\"o}rdlichen Hemisph{\"a}re. Dennoch ist es schwierig, die Dynamik von {\"O}kosystemen in den hohen Breitengraden vorherzusagen, da die Wechselwirkungen zwischen abiotischen und biotischen Komponenten sehr komplex sind. Da die Vergangenheit der Schl{\"u}ssel zur Zukunft ist, ist die Interpretation vergangener {\"o}kologischer Ver{\"a}nderungen m{\"o}glich, um laufende Prozesse besser zu verstehen. Im Quart{\"a}r durchlief das Pleistoz{\"a}n mehrere glaziale und interglaziale Phasen, welche die {\"O}kosysteme der Vergangenheit beeinflussten. W{\"a}hrend des letzten Glazials bedeckte die pleistoz{\"a}ne Steppentundra den gr{\"o}ßten Teil der unvergletscherten n{\"o}rdlichen Hemisph{\"a}re und verschwand parallel zum Aussterben der Megafauna am {\"U}bergang zum Holoz{\"a}n (vor etwa 11 700 Jahren). Der Ursprung des R{\"u}ckgangs der Steppentundra ist nicht gut erforscht, und die Kenntnis {\"u}ber die Mechanismen, die zu den Ver{\"a}nderungen in den vergangenen Lebensgemeinschaften und {\"O}kosystemen gef{\"u}hrt haben, ist von hoher Priorit{\"a}t, da sie wahrscheinlich mit denen vergleichbar sind, die sich auf moderne {\"O}kosysteme auswirken. Durch die Entnahme von See- oder Permafrostkernsedimenten kann die vergangene Artenvielfalt an den {\"U}berg{\"a}ngen zwischen Eis- und Zwischeneiszeiten untersucht werden. Sibirien und Beringia waren der Ursprung der Ausbreitung der Steppentundra, weshalb die Untersuchung dieses Gebiets hohe Priorit{\"a}t hat. Bis vor kurzem waren Makrofossilien und Pollen die g{\"a}ngigsten Methoden. Sie dienen der Rekonstruktion vergangener Ver{\"a}nderungen in der Zusammensetzung der Bev{\"o}lkerung, haben aber ihre Grenzen und Schw{\"a}chen. Seit Ende des 20. Jahrhunderts kann auch sediment{\"a}re alte DNA (sedaDNA) untersucht werden. Mein Hauptziel war es, durch den Einsatz von sedaDNA-Ans{\"a}tzen wissenschaftliche Beweise f{\"u}r Ver{\"a}nderungen in der Zusammensetzung und Vielfalt der {\"O}kosysteme der n{\"o}rdlichen Hemisph{\"a}re am {\"U}bergang zwischen den quart{\"a}ren Eiszeiten und Zwischeneiszeiten zu liefern. In dieser Arbeit liefere ich Momentaufnahmen ganzer alter {\"O}kosysteme und beschreibe die Ver{\"a}nderungen in der Zusammensetzung zwischen Quart{\"a}rglazialen und Interglazialen und best{\"a}tige die Vegetationszusammensetzung sowie die r{\"a}umlichen und zeitlichen Grenzen der pleistoz{\"a}nen Steppentundra. Ich stelle einen allgemeinen Verlust der Pflanzenvielfalt fest, wobei das Aussterben der Pflanzen parallel zum Aussterben der Megafauna verlief. Ich zeige auf, wie der Verlust der biotischen Widerstandsf{\"a}higkeit zum Zusammenbruch eines zuvor gut etablierten Systems f{\"u}hrte, und diskutiere meine Ergebnisse im Hinblick auf den laufenden Klimawandel. Mit weiteren Arbeiten zur Eingrenzung von Verzerrungen und Grenzen kann sedaDNA parallel zu den etablierteren Makrofossilien- und Pollenans{\"a}tzen verwendet werden oder diese sogar ersetzen, da meine Ergebnisse die Robustheit und das Potenzial von sedaDNA zur Beantwortung neuer pal{\"a}o{\"o}kologischer Fragen wie Ver{\"a}nderungen der Pflanzenvielfalt und -verluste belegen und Momentaufnahmen ganzer alter Biota liefern.}, language = {en} } @article{LiuStoofLeichsenringKruseetal.2020, author = {Liu, Sisi and Stoof-Leichsenring, Kathleen Rosemarie and Kruse, Stefan and Pestryakova, Luidmila Agafyevna and Herzschuh, Ulrike}, title = {Holocene vegetation and plant diversity changes in the north-eastern Siberian treeline region from pollen and sedimentary ancient DNA}, series = {Frontiers in Ecology and Evolution}, volume = {8}, journal = {Frontiers in Ecology and Evolution}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-701X}, doi = {10.3389/fevo.2020.560243}, pages = {17}, year = {2020}, abstract = {Although sedimentary ancient DNA (sedaDNA) has been increasingly used to study paleoecological dynamics (Schulte et al., 2020), the approach has rarely been compared with the traditional method of pollen analysis for investigating past changes in the vegetation composition and diversity of Arctic treeline areas. Here, we provide a history of latitudinal floristic composition and species diversity based on a comparison ofsedaDNA and pollen data archived in three Siberian lake sediment cores spanning the mid-Holocene to the present (7.6-0 cal ka BP), from northern typical tundra to southern open larch forest in the Omoloy region. Our results show that thesedaDNA approach identifies more plant taxa found in the local vegetation communities, while the corresponding pollen analysis mainly captures the regional vegetation development and has its limitations for plant diversity reconstruction. Measures of alpha diversity were calculated based onsedaDNA data recovered from along a tundra to forest tundra to open larch forest gradient. Across all sites,sedaDNA archives provide a complementary record of the vegetation transition within each lake's catchment, tracking a distinct latitudinal vegetation type range from larch tree/alder shrub (open larch forest site) to dwarf shrub-steppe (forest tundra) to wet sedge tundra (typical tundra site). By contrast, the pollen data reveal an open landscape, which cannot distinguish the temporal changes in compositional vegetation for the open larch forest site and forest-tundra site. IncreasingLarixpollen percentages were recorded in the forest-tundra site in the last millenium although noLarixDNA was detected, suggesting that thesedaDNA approach performs better for tracking the local establishment ofLarix. Highest species richness and diversity are found in the mid-Holocene (before 4.4 ka) at the typical tundra site with a diverse range of vegetational habitats, while lowest species richness is recorded for the forest tundra where dwarf-willow habitats dominated the lake's catchment. During the late Holocene, strong declines in species richness and diversity are found at the typical tundra site with the vegetation changing to relatively simple communities. Nevertheless, plant species richness is mostly higher than at the forest-tundra site, which shows a slightly decreasing trend. Plant species richness at the open larch forest site fluctuates through time and is higher than the other sites since around 2.5 ka. Taken together, there is no evidence to suggest that the latitudinal gradients in species diversity changes are present at a millennial scale. Additionally, a weak correlation between the principal component analysis (PCA) site scores ofsedaDNA and species richness suggests that climate may not be a direct driver of species turnover within a lake's catchment. Our data suggest thatsedaDNA and pollen have different but complementary abilities for reconstructing past vegetation and species diversity along a latitude.}, language = {en} } @article{AngelopoulosOverduinWestermannetal.2020, author = {Angelopoulos, Michael and Overduin, Pier Paul and Westermann, Sebastian and Tronicke, Jens and Strauss, Jens and Schirrmeister, Lutz and Biskaborn, Boris K. and Liebner, Susanne and Maksimov, Georgii and Grigoriev, Mikhail N. and Grosse, Guido}, title = {Thermokarst lake to lagoon transitions in Eastern Siberia}, series = {Journal of geophysical research : Earth surface}, volume = {125}, journal = {Journal of geophysical research : Earth surface}, number = {10}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9003}, doi = {10.1029/2019JF005424}, pages = {21}, year = {2020}, abstract = {As the Arctic coast erodes, it drains thermokarst lakes, transforming them into lagoons, and, eventually, integrates them into subsea permafrost. Lagoons represent the first stage of a thermokarst lake transition to a marine setting and possibly more saline and colder upper boundary conditions. In this research, borehole data, electrical resistivity surveying, and modeling of heat and salt diffusion were carried out at Polar Fox Lagoon on the Bykovsky Peninsula, Siberia. Polar Fox Lagoon is a seasonally isolated water body connected to Tiksi Bay through a channel, leading to hypersaline waters under the ice cover. The boreholes in the center of the lagoon revealed floating ice and a saline cryotic bed underlain by a saline cryotic talik, a thin ice-bearing permafrost layer, and unfrozen ground. The bathymetry showed that most of the lagoon had bedfast ice in spring. In bedfast ice areas, the electrical resistivity profiles suggested that an unfrozen saline layer was underlain by a thick layer of refrozen talik. The modeling showed that thermokarst lake taliks can refreeze when submerged in saltwater with mean annual bottom water temperatures below or slightly above 0 degrees C. This occurs, because the top-down chemical degradation of newly formed ice-bearing permafrost is slower than the refreezing of the talik. Hence, lagoons may precondition taliks with a layer of ice-bearing permafrost before encroachment by the sea, and this frozen layer may act as a cap on gas migration out of the underlying talik.}, language = {en} } @article{WieczorekKolmogorovKruseetal.2017, author = {Wieczorek, Mareike and Kolmogorov, Alexei and Kruse, Stefan and Jacobsen, Inga and Nitze, Ingmar and Nikolaev, Anatoly N. and Heinrich, Ingo and Pestryakova, Luidmila Agafyevna and Herzschuh, Ulrike}, title = {Disturbance-effects on treeline larch-stands in the lower Kolyma River area (NE Siberia)}, series = {Silva Fennica : a quarterly journal for forest science}, volume = {51}, journal = {Silva Fennica : a quarterly journal for forest science}, number = {3}, publisher = {The Finnish Society of Forest Science}, address = {Helsinki}, issn = {0037-5330}, doi = {10.14214/sf.1666}, pages = {20}, year = {2017}, abstract = {Tree stands in the boreal treeline ecotone are, in addition to climate change, impacted by disturbances such as fire, water-related disturbances and logging. We aim to understand how these disturbances affect growth, age structure, and spatial patterns of larch stands in the north-eastern Siberian treeline ecotone (lower Kolyma River region), an insufficiently researched region. Stand structure of Larix cajanderi Mayr was studied at seven sites impacted by disturbances. Maximum tree age ranged from 44 to 300 years. Young to medium-aged stands had, independent of disturbance type, the highest stand densities with over 4000 larch trees per ha. These sites also had the highest growth rates for tree height and stem diameter. Overall lowest stand densities were found in a polygonal field at the northern end of the study area, with larches growing in distinct " tree islands". At all sites, saplings are significantly clustered. Differences in fire severity led to contrasting stand structures with respect to tree, recruit, and overall stand densities. While a low severity fire resulted in low-density stands with high proportions of small and young larches, high severity fires resulted in high-density stands with high proportions of big trees. At waterdisturbed sites, stand structure varied between waterlogged and drained sites and latitude. These mixed effects of climate and disturbance make it difficult to predict future stand characteristics and the treeline position.}, language = {en} } @phdthesis{Schulte2022, author = {Schulte, Luise}, title = {Dynamics of Larix (Mill.) species in Siberia during the last 50,000 years inferred from sedimentary ancient DNA}, doi = {10.25932/publishup-55878}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-558782}, school = {Universit{\"a}t Potsdam}, pages = {xi, 121}, year = {2022}, abstract = {The deciduous needle tree larch (Larix Mill.) covers more than 80\% of the Asian boreal forests. Only a few Larix species constitute the vast forests and these species differ markedly in their ecological traits, most importantly in their ability to grow on and stabilize underlying permafrost. The pronounced dominance of the summergreen larches makes the Asian boreal forests unique, as the rest of the northern hemisphere boreal forests is almost exclusively dominated by evergreen needle-leaf forests. Global warming is impacting the whole world but is especially pronounced in the arctic and boreal regions. Although adapted to extreme climatic conditions, larch forests are sensitive to varying climatic conditions. By their sheer size, changes in Asian larch forests as range shifts or changes in species composition and the resulting vegetation-climate feedbacks are of global relevance. It is however still uncertain if larch forests will persist under the ongoing warming climate or if they will be replaced by evergreen forests. It is therefore of great importance to understand how these ecosystems will react to future climate warmings and if they will maintain their dominance. One step in the better understanding of larch dynamics is to study how the vast dominant forests developed and why they only established in northern Asia. A second step is to study how the species reacted to past changes in the climate. The first objective of this thesis was to review and identify factors promoting Asian larch dominance. I achieved this by synthesizing and comparing reported larch occurrences and influencing components on the northern hemisphere continents in the present and in the past. The second objective was to find a possibility to directly study past Larix populations in Siberia and specifically their genetic variation, enabling the study of geographic movements. For this, I established chloroplast enrichment by hybridization capture from sedimentary ancient DNA (sedaDNA) isolated from lake sediment records. The third objective was to use the established method to track past larch populations, their glacial refugia during the Last Glacial Maximum (LGM) around 21,000 years before present (ka BP), and their post-glacial migration patterns. To study larch promoting factors, I compared the present state of larch species ranges, areas of dominance, their bioclimatic niches, and the distribution on different extents and thaw depths of permafrost. The species comparison showed that the bioclimatic niches greatly overlap between the American and Asian species and that it is only in the extremely continental climates in which only the Asian larch species can persist. I revealed that the area of dominance is strongly connected to permafrost extent but less linked to permafrost seasonal thaw depths. Comparisons of the paleorecord of larch between the continents suggest differences in the recolonization history. Outside of northern Asia and Alaska, glacial refugial populations of larch were confined to the southern regions and thus recolonization could only occur as migration from south to north. Alaskan larch populations could not establish wide-range dominant forest which could be related to their own genetically depletion as separated refugial population. In Asia, it is still unclear whether or not the northern refugial populations contributed and enhanced the postglacial colonization or whether they were replaced by populations invading from the south in the course of climate warming. Asian larch dominance is thus promoted partly by adaptions to extremely continental climates and by adaptations to grow on continuous permafrost but could be also connected to differences in glacial survival and recolonization history of Larix species. Except for extremely rare macrofossil findings of fossilized cones, traditional methods to study past vegetation are not able to distinguish between larch species or populations. Within the scope of this thesis, I therefore established a method to retrieve genetic information of past larch populations to distinguish between species. Using the Larix chloroplast genome as target, I successfully applied the method of DNA target enrichment by hybridization capture on sedaDNA samples from lake records and showed that it is able to distinguish between larch species. I then used the method on samples from lake records from across Siberia dating back up to 50 ka BP. The results allowed me to address the question of glacial survival and post-glacial recolonization mode in Siberian larch species. The analyzed pattern showed that LGM refugia were almost exclusively constituted by L. gmelinii, even in sites of current L. sibirica distribution. For included study sites, L. sibirica migrated into its extant northern distribution area only in the Holocene. Consequently, the post-glacial recolonization of L. sibirica was not enhanced by northern glacial refugia. In case of sites in extant distribution area of L. gmelinii, the absence of a genetic turn-over point to a continuous population rather than an invasion of southern refugia. The results suggest that climate has a strong influence on the distribution of Larix species and that species may also respond differently to future climate warming. Because species differ in their ecological characteristics, species distribution is also relevant with respect to further feedbacks between vegetation and climate. With this thesis, I give an overview of present and past larch occurrences and evaluate which factors promote their dominance. Furthermore, I provide the tools to study past Larix species and give first important insights into the glacial history of Larix populations.}, language = {en} } @article{TianCaoDallmeyeretal.2018, author = {Tian, Fang and Cao, Xianyong and Dallmeyer, Anne and Lohmann, Gerrit and Zhang, Xu and Ni, Jian and Andreev, Andrei and Anderson, Patricia M. and Lozhkin, Anatoly V. and Bezrukova, Elena and Rudaya, Natalia and Xu, Qinghai and Herzschuh, Ulrike}, title = {Biome changes and their inferred climatic drivers in northern and eastern continental Asia at selected times since 40 cal ka BP}, series = {Vegetation History and Archaeobotany}, volume = {27}, journal = {Vegetation History and Archaeobotany}, number = {2}, publisher = {Springer}, address = {New York}, issn = {0939-6314}, doi = {10.1007/s00334-017-0653-8}, pages = {365 -- 379}, year = {2018}, abstract = {Recent global warming is pronounced in high-latitude regions (e.g. northern Asia), and will cause the vegetation to change. Future vegetation trends (e.g. the "arctic greening") will feed back into atmospheric circulation and the global climate system. Understanding the nature and causes of past vegetation changes is important for predicting the composition and distribution of future vegetation communities. Fossil pollen records from 468 sites in northern and eastern Asia were biomised at selected times between 40 cal ka bp and today. Biomes were also simulated using a climate-driven biome model and results from the two approaches compared in order to help understand the mechanisms behind the observed vegetation changes. The consistent biome results inferred by both approaches reveal that long-term and broad-scale vegetation patterns reflect global- to hemispheric-scale climate changes. Forest biomes increase around the beginning of the late deglaciation, become more widespread during the early and middle Holocene, and decrease in the late Holocene in fringe areas of the Asian Summer Monsoon. At the southern and southwestern margins of the taiga, forest increases in the early Holocene and shows notable species succession, which may have been caused by winter warming at ca. 7 cal ka bp. At the northeastern taiga margin (central Yakutia and northeastern Siberia), shrub expansion during the last deglaciation appears to prevent the permafrost from thawing and hinders the northward expansion of evergreen needle-leaved species until ca. 7 cal ka bp. The vegetation-climate disequilibrium during the early Holocene in the taiga-tundra transition zone suggests that projected climate warming will not cause a northward expansion of evergreen needle-leaved species.}, language = {en} } @misc{Herzschuh2020, author = {Herzschuh, Ulrike}, title = {Legacy of the Last Glacial on the present-day distribution of deciduous versus evergreen boreal forests}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {2}, issn = {1866-8372}, doi = {10.25932/publishup-52405}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-524057}, pages = {11}, year = {2020}, abstract = {Issue Despite their rather similar climatic conditions, eastern Eurasia and northern North America are largely covered by different plant functional types (deciduous or evergreen boreal forest) composed of larch or pine, spruce and fir, respectively. I propose that these deciduous and evergreen boreal forests represent alternative quasi-stable states, triggered by their different northern tree refugia that reflect the different environmental conditions experienced during the Last Glacial. Evidence This view is supported by palaeoecological and environmental evidence. Once established, Asian larch forests are likely to have stabilized through a complex vegetation-fire-permafrost soil-climate feedback system. Conclusion With respect to future forest developments, this implies that Asian larch forests are likely to be governed by long-term trajectories and are therefore largely resistant to natural climate variability on time-scales shorter than millennia. The effects of regional human impact and anthropogenic global warming might, however, cause certain stability thresholds to be crossed, meaning that irreversible transitions occur and resulting in marked consequences for ecosystem services on these human-relevant time-scales.}, language = {en} } @article{Herzschuh2019, author = {Herzschuh, Ulrike}, title = {Legacy of the Last Glacial on the present-day distribution of deciduous versus evergreen boreal forests}, series = {Global ecology and biogeography : a journal of macroecology}, volume = {29}, journal = {Global ecology and biogeography : a journal of macroecology}, number = {2}, publisher = {John Wiley \& Sons, Inc.}, address = {Hoboken}, issn = {1466-822X}, doi = {10.1111/geb.13018}, pages = {198 -- 206}, year = {2019}, abstract = {Issue Despite their rather similar climatic conditions, eastern Eurasia and northern North America are largely covered by different plant functional types (deciduous or evergreen boreal forest) composed of larch or pine, spruce and fir, respectively. I propose that these deciduous and evergreen boreal forests represent alternative quasi-stable states, triggered by their different northern tree refugia that reflect the different environmental conditions experienced during the Last Glacial. Evidence This view is supported by palaeoecological and environmental evidence. Once established, Asian larch forests are likely to have stabilized through a complex vegetation-fire-permafrost soil-climate feedback system. Conclusion With respect to future forest developments, this implies that Asian larch forests are likely to be governed by long-term trajectories and are therefore largely resistant to natural climate variability on time-scales shorter than millennia. The effects of regional human impact and anthropogenic global warming might, however, cause certain stability thresholds to be crossed, meaning that irreversible transitions occur and resulting in marked consequences for ecosystem services on these human-relevant time-scales.}, language = {en} } @phdthesis{Holm2020, author = {Holm, Stine}, title = {Methanogenic communities and metaplasmidome-encoded functions in permafrost environments exposed to thaw}, school = {Universit{\"a}t Potsdam}, pages = {VI, 243}, year = {2020}, abstract = {This thesis investigates how the permafrost microbiota responds to global warming. In detail, the constraints behind methane production in thawing permafrost were linked to methanogenic activity, abundance and composition. Furthermore, this thesis offers new insights into microbial adaptions to the changing environmental conditions during global warming. This was assesed by investigating the potential ecological relevant functions encoded by plasmid DNA within the permafrost microbiota. Permafrost of both interglacial and glacial origin spanning the Holocene to the late Pleistocene, including Eemian, were studied during long-term thaw incubations. Furthermore, several permafrost cores of different stratigraphy, soil type and vegetation cover were used to target the main constraints behind methane production during short-term thaw simulations. Short- and long-term incubations simulating thaw with and without the addition of substrate were combined with activity measurements, amplicon and metagenomic sequencing of permanently frozen and seasonally thawed active layer. Combined, it allowed to address the following questions. i) What constraints methane production when permafrost thaws and how is this linked to methanogenic activity, abundance and composition? ii) How does the methanogenic community composition change during long-term thawing conditions? iii) Which potential ecological relevant functions are encoded by plasmid DNA in active layer soils? The major outcomes of this thesis are as follows. i) Methane production from permafrost after long-term thaw simulation was found to be constrained mainly by the abundance of methanogens and the archaeal community composition. Deposits formed during periods of warmer temperatures and increased precipitation, (here represented by deposits from the Late Pleistocene of both interstadial and interglacial periods) were found to respond strongest to thawing conditions and to contain an archaeal community dominated by methanogenic archaea (40\% and 100\% of all detected archaea). Methanogenic population size and carbon density were identified as main predictors for potential methane production in thawing permafrost in short-term incubations when substrate was sufficiently available. ii) Besides determining the methanogenic activity after long-term thaw, the paleoenvironmental conditions were also found to influence the response of the methanogenic community composition. Substantial shifts within methanogenic community structure and a drop in diversity were observed in deposits formed during warmer periods, but not in deposits from stadials, when colder and drier conditions occurred. Overall, a shift towards a dominance of hydrogenotrophic methanogens was observed in all samples, except for the oldest interglacial deposits from the Eemian, which displayed a potential dominance of acetoclastic methanogens. The Eemian, which is discussed to serve as an analogue to current climate conditions, contained highly active methanogenic communities. However, all potential limitation of methane production after permafrost thaw, it means methanogenic community structure, methanogenic population size, and substrate pool might be overcome after permafrost had thawed on the long-term. iii) Enrichments with soil from the seasonally thawed active layer revealed that its plasmid DNA ('metaplasmidome') carries stress-response genes. In particular it encoded antibiotic resistance genes, heavy metal resistance genes, cold shock proteins and genes encoding UV-protection. Those are functions that are directly involved in the adaptation of microbial communities to stresses in polar environments. It was further found that metaplasmidomes from the Siberian active layer originate mainly from Gammaproteobacteria. By applying enrichment cultures followed by plasmid DNA extraction it was possible to obtain a higher average contigs length and significantly higher recovery of plasmid sequences than from extracting plasmid sequences from metagenomes. The approach of analyzing 'metaplasmidomes' established in this thesis is therefore suitable for studying the ecological role of plasmids in polar environments in general. This thesis emphasizes that including microbial community dynamics have the potential to improve permafrost-carbon projections. Microbially mediated methane release from permafrost environments may significantly impact future climate change. This thesis identified drivers of methanogenic composition, abundance and activity in thawing permafrost landscapes. Finally, this thesis underlines the importance to study how the current warming Arctic affects microbial communities in order to gain more insight into microbial response and adaptation strategies.}, language = {en} }