@phdthesis{Lenz2016, author = {Lenz, Josefine}, title = {Thermokarst dynamics in central-eastern Beringia}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-101364}, school = {Universit{\"a}t Potsdam}, pages = {XII, 128, A-47}, year = {2016}, abstract = {Widespread landscape changes are presently observed in the Arctic and are most likely to accelerate in the future, in particular in permafrost regions which are sensitive to climate warming. To assess current and future developments, it is crucial to understand past environmental dynamics in these landscapes. Causes and interactions of environmental variability can hardly be resolved by instrumental records covering modern time scales. However, long-term environmental variability is recorded in paleoenvironmental archives. Lake sediments are important archives that allow reconstruction of local limnogeological processes as well as past environmental changes driven directly or indirectly by climate dynamics. This study aims at reconstructing Late Quaternary permafrost and thermokarst dynamics in central-eastern Beringia, the terrestrial land mass connecting Eurasia and North America during glacial sea-level low stands. In order to investigate development, processes and influence of thermokarst dynamics, several sediment cores from extant lakes and drained lake basins were analyzed to answer the following research questions: 1. When did permafrost degradation and thermokarst lake development take place and what were enhancing and inhibiting environmental factors? 2. What are the dominant processes during thermokarst lake development and how are they reflected in proxy records? 3. How did, and still do, thermokarst dynamics contribute to the inventory and properties of organic matter in sediments and the carbon cycle? Methods applied in this study are based upon a multi-proxy approach combining sedimentological, geochemical, geochronological, and micropaleontological analyses, as well as analyses of stable isotopes and hydrochemistry of pore-water and ice. Modern field observations of water quality and basin morphometrics complete the environmental investigations. The investigated sediment cores reveal permafrost degradation and thermokarst dynamics on different time scales. The analysis of a sediment core from GG basin on the northern Seward Peninsula (Alaska) shows prevalent terrestrial accumulation of yedoma throughout the Early to Mid Wisconsin with intermediate wet conditions at around 44.5 to 41.5 ka BP. This first wetland development was terminated by the accumulation of a 1-meter-thick airfall tephra most likely originating from the South Killeak Maar eruption at 42 ka BP. A depositional hiatus between 22.5 and 0.23 ka BP may indicate thermokarst lake formation in the surrounding of the site which forms a yedoma upland till today. The thermokarst lake forming GG basin initiated 230 ± 30 cal a BP and drained in Spring 2005 AD. Four years after drainage the lake talik was still unfrozen below 268 cm depth. A permafrost core from Mama Rhonda basin on the northern Seward Peninsula preserved a full lacustrine record including several lake phases. The first lake generation developed at 11.8 cal ka BP during the Lateglacial-Early Holocene transition; its old basin (Grandma Rhonda) is still partially preserved at the southern margin of the study basin. Around 9.0 cal ka BP a shallow and more dynamic thermokarst lake developed with actively eroding shorelines and potentially intermediate shallow water or wetland phases (Mama Rhonda). Mama Rhonda lake drainage at 1.1 cal ka BP was followed by gradual accumulation of terrestrial peat and top-down refreezing of the lake talik. A significant lower organic carbon content was measured in Grandma Rhonda deposits (mean TOC of 2.5 wt\%) than in Mama Rhonda deposits (mean TOC of 7.9 wt\%) highlighting the impact of thermokarst dynamics on biogeochemical cycling in different lake generations by thawing and mobilization of organic carbon into the lake system. Proximal and distal sediment cores from Peatball Lake on the Arctic Coastal Plain of Alaska revealed young thermokarst dynamics since about 1,400 years along a depositional gradient based on reconstructions from shoreline expansion rates and absolute dating results. After its initiation as a remnant pond of a previous drained lake basin, a rapidly deepening lake with increasing oxygenation of the water column is evident from laminated sediments, and higher Fe/Ti and Fe/S ratios in the sediment. The sediment record archived characterizing shifts in depositional regimes and sediment sources from upland deposits and re-deposited sediments from drained thaw lake basins depending on the gradually changing shoreline configuration. These changes are evident from alternating organic inputs into the lake system which highlights the potential for thermokarst lakes to recycle old carbon from degrading permafrost deposits of its catchment. The lake sediment record from Herschel Island in the Yukon (Canada) covers the full Holocene period. After its initiation as a thermokarst lake at 11.7 cal ka BP and intense thermokarst activity until 10.0 cal ka BP, the steady sedimentation was interrupted by a depositional hiatus at 1.6 cal ka BP which likely resulted from lake drainage or allochthonous slumping due to collapsing shore lines. The specific setting of the lake on a push moraine composed of marine deposits is reflected in the sedimentary record. Freshening of the maturing lake is indicated by decreasing electrical conductivity in pore-water. Alternation of marine to freshwater ostracods and foraminifera confirms decreasing salinity as well but also reflects episodical re-deposition of allochthonous marine sediments. Based on permafrost and lacustrine sediment records, this thesis shows examples of the Late Quaternary evolution of typical Arctic permafrost landscapes in central-eastern Beringia and the complex interaction of local disturbance processes, regional environmental dynamics and global climate patterns. This study confirms that thermokarst lakes are important agents of organic matter recycling in complex and continuously changing landscapes.}, language = {en} } @phdthesis{Mitzscherling2020, author = {Mitzscherling, Julia}, title = {Microbial communities in submarine permafrost and their response to permafrost degradation and warming}, doi = {10.25932/publishup-47124}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-471240}, school = {Universit{\"a}t Potsdam}, pages = {I, 231}, year = {2020}, abstract = {The Arctic region is especially impacted by global warming as temperatures in high latitude regions have increased and are predicted to further rise at levels above the global average. This is crucial to Arctic soils and the shallow shelves of the Arctic Ocean as they are underlain by permafrost. Perennially frozen ground is a habitat for a large number and great diversity of viable microorganisms, which can remain active even under freezing conditions. Warming and thawing of permafrost makes trapped soil organic carbon more accessible to microorganisms. They can transform it to the greenhouse gases carbon dioxide, methane and nitrous oxide. On the other hand, it is assumed that thawing of the frozen ground stimulates microbial activity and carbon turnover. This can lead to a positive feedback loop of warming and greenhouse gas release. Submarine permafrost covers most areas of the Siberian Arctic Shelf and contains a large though unquantified carbon pool. However, submarine permafrost is not only affected by changes in the thermal regime but by drastic changes in the geochemical composition as it formed under terrestrial conditions and was inundated by Holocene sea level rise and coastal erosion. Seawater infiltration into permafrost sediments resulted in an increase of the pore water salinity and, thus, in thawing of permafrost in the upper sediment layers even at subzero temperatures. The permafrost below, which was not affected by seawater, remained ice-bonded, but warmed through seawater heat fluxes. The objective of this thesis was to study microbial communities in submarine permafrost with a focus on their response to seawater influence and long-term warming using a combined approach of molecular biological and physicochemical analyses. The microbial abundance, community composition and structure as well as the diversity were investigated in drill cores from two locations in the Laptev Sea, which were subjected to submarine conditions for centuries to millennia. The microbial abundance was measured through total cell counts and copy numbers of the 16S rRNA gene and of functional genes. The latter comprised genes which are indicative for methane production (mcrA) and sulfate reduction (dsrB). The microbial community was characterized by high-throughput-sequencing of the 16S rRNA gene. Physicochemical analyses included the determination of the pore water geochemical and stable isotopic composition, which were used to describe the degree of seawater influence. One major outcome of the thesis is that the submarine permafrost stratified into different so-called pore water units centuries as well as millennia after inundation: (i) sediments that were mixed with seafloor sediments, (ii) sediments that were infiltrated with seawater, and (iii) sediments that were unaffected by seawater. This stratification was reflected in the submarine permafrost microbial community composition only millennia after inundation but not on time-scales of centuries. Changes in the community composition as well as abundance were used as a measure for microbial activity and the microbial response to changing thermal and geochemical conditions. The results were discussed in the context of permafrost temperature, pore water composition, paleo-climatic proxies and sediment age. The combination of permafrost warming and increasing salinity as well as permafrost warming alone resulted in a disturbance of the microbial communities at least on time-scales of centuries. This was expressed by a loss of microbial abundance and bacterial diversity. At the same time, the bacterial community of seawater unaffected but warmed permafrost was mainly determined by environmental and climatic conditions at the time of sediment deposition. A stimulating effect of warming was observed only in seawater unaffected permafrost after millennia-scale inundation, visible through increased microbial abundance and reduced amounts of substrate. Despite submarine exposure for centuries to millennia, the community of bacteria in submarine permafrost still generally resembled the community of terrestrial permafrost. It was dominated by phyla like Actinobacteria, Chloroflexi, Firmicutes, Gemmatimonadetes and Proteobacteria, which can be active under freezing conditions. Moreover, the archaeal communities of both study sites were found to harbor high abundances of marine and terrestrial anaerobic methane oxidizing archaea (ANME). Results also suggested ANME populations to be active under in situ conditions at subzero temperatures. Modeling showed that potential anaerobic oxidation of methane (AOM) could mitigate the release of almost all stored or microbially produced methane from thawing submarine permafrost. Based on the findings presented in this thesis, permafrost warming and thawing under submarine conditions as well as permafrost warming without thaw are supposed to have marginal effects on the microbial abundance and community composition, and therefore likely also on carbon mobilization and the formation of methane. Thawing under submarine conditions even stimulates AOM and thus mitigates the release of methane.}, language = {en} }