@article{PetreskadeCastroSandevetal.2020, author = {Petreska, Irina and de Castro, Antonio S. M. and Sandev, Trifce and Lenzi, Ervin K.}, title = {The time-dependent Schr{\"o}dinger equation in non-integer dimensions for constrained quantum motion}, series = {Modern physics letters : A, Particles and fields, gravitation, cosmology, nuclear physics}, volume = {384}, journal = {Modern physics letters : A, Particles and fields, gravitation, cosmology, nuclear physics}, number = {34}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0375-9601}, doi = {10.1016/j.physleta.2020.126866}, pages = {9}, year = {2020}, abstract = {We propose a theoretical model, based on a generalized Schroedinger equation, to study the behavior of a constrained quantum system in non-integer, lower than two-dimensional space. The non-integer dimensional space is formed as a product space X x Y, comprising x-coordinate with a Hausdorff measure of dimension alpha(1) = D -1 (1 < D < 2) and y-coordinate with the Lebesgue measure of dimension of length (alpha(2) = 1). Geometric constraints are set at y = 0. Two different approaches to find the Green's function are employed, both giving the same form in terms of the Fox H-function. For D = 2, the solution for two-dimensional quantum motion on a comb is recovered. (C) 2020 Elsevier B.V. All rights reserved.}, language = {en} } @article{FischerKeller2021, author = {Fischer, Florian and Keller, Matthias}, title = {Riesz decompositions for Schr{\"o}dinger operators on graphs}, series = {Journal of mathematical analysis and applications}, volume = {495}, journal = {Journal of mathematical analysis and applications}, number = {1}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0022-247X}, doi = {10.1016/j.jmaa.2020.124674}, pages = {22}, year = {2021}, abstract = {We study superharmonic functions for Schrodinger operators on general weighted graphs. Specifically, we prove two decompositions which both go under the name Riesz decomposition in the literature. The first one decomposes a superharmonic function into a harmonic and a potential part. The second one decomposes a superharmonic function into a sum of superharmonic functions with certain upper bounds given by prescribed superharmonic functions. As application we show a Brelot type theorem.}, language = {en} }