@phdthesis{Zimmermann2009, author = {Zimmermann, Alexander}, title = {Rainfall redistribution and change of water quality in tropical forest canopies : patterns and persistence}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-32556}, school = {Universit{\"a}t Potsdam}, year = {2009}, abstract = {Motivations and research objectives: During the passage of rain water through a forest canopy two main processes take place. First, water is redistributed; and second, its chemical properties change substantially. The rain water redistribution and the brief contact with plant surfaces results in a large variability of both throughfall and its chemical composition. Since throughfall and its chemistry influence a range of physical, chemical and biological processes at or below the forest floor the understanding of throughfall variability and the prediction of throughfall patterns potentially improves the understanding of near-surface processes in forest ecosystems. This thesis comprises three main research objectives. The first objective is to determine the variability of throughfall and its chemistry, and to investigate some of the controlling factors. Second, I explored throughfall spatial patterns. Finally, I attempted to assess the temporal persistence of throughfall and its chemical composition. Research sites and methods: The thesis is based on investigations in a tropical montane rain forest in Ecuador, and lowland rain forest ecosystems in Brazil and Panama. The first two studies investigate both throughfall and throughfall chemistry following a deterministic approach. The third study investigates throughfall patterns with geostatistical methods, and hence, relies on a stochastic approach. Results and Conclusions: Throughfall is highly variable. The variability of throughfall in tropical forests seems to exceed that of many temperate forests. These differences, however, do not solely reflect ecosystem-inherent characteristics, more likely they also mirror management practices. Apart from biotic factors that influence throughfall variability, rainfall magnitude is an important control. Throughfall solute concentrations and solute deposition are even more variable than throughfall. In contrast to throughfall volumes, the variability of solute deposition shows no clear differences between tropical and temperate forests, hence, biodiversity is not a strong predictor of solute deposition heterogeneity. Many other factors control solute deposition patterns, for instance, solute concentration in rainfall and antecedent dry period. The temporal variability of the latter factors partly accounts for the low temporal persistence of solute deposition. In contrast, measurements of throughfall volume are quite stable over time. Results from the Panamanian research site indicate that wet and dry areas outlast consecutive wet seasons. At this research site, throughfall exhibited only weak or pure nugget autocorrelation structures over the studies lag distances. A close look at the geostatistical tools at hand provided evidence that throughfall datasets, in particular those of large events, require robust variogram estimation if one wants to avoid outlier removal. This finding is important because all geostatistical throughfall studies that have been published so far analyzed their data using the classical, non-robust variogram estimator.}, language = {en} } @phdthesis{Zimmermann2007, author = {Zimmermann, Beate}, title = {Spatial and temporal variability of the soil saturated hydraulic conductivity in gradients of disturbance}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-16402}, school = {Universit{\"a}t Potsdam}, year = {2007}, abstract = {As land-cover conversion continues to expand into ever more remote areas in the humid tropics, montane rainforests are increasingly threatened. In the south Ecuadorian Andes, they are not only subject to man-made disturbances but also to naturally occurring landslides. I was interested in the impact of this ecosystem dynamics on a key parameter of the hydrologic cycle, the soil saturated hydraulic conductivity (synonym: permeability; Ks from here on), because it is a sensitive indicator for soil disturbances. My general objective was to quantify the effects of the regional natural and human disturbances on the saturated hydraulic conductivity and to describe the resulting spatial-temporal patterns. The main hypotheses were: 1) disturbances cause an apparent displacement of the less permeable soil layer towards the surface, either due to a loss of the permeable surface soil after land-sliding, or as a consequence of the surface soil compaction under cattle pastures; 2) 'recovery' from disturbance, either because of landslide re-vegetation or because of secondary succession after pasture abandonment, involves an apparent displacement of the less permeable layer back towards the original depth an 3) disturbances cause a simplification of the Ks spatial structure, i.e. the spatially dependent random variation diminishes; the subsequent recovery entails the re-establishment of the original structure. In my first study, I developed a synthesis of recent geostatistical research regarding its applicability to soil hydraulic data, including exploratory data analysis and variogram estimation techniques; I subsequently evaluated the results in terms of spatial prediction uncertainty. Concerning the exploratory data analysis, my main results were: 1) Gaussian uni- and bivariate distributions of the log-transformed data; 2) the existence of significant local trends; 3) no need for robust estimation; 4) no anisotropic variation. I found partly considerable differences in covariance parameters resulting from different variogram estimation techniques, which, in the framework of spatial prediction, were mainly reflected in the spatial connectivity of the Ks-field. Ignoring the trend component and an arbitrary use of robust estimators, however, would have the most severe consequences in this respect. Regarding variogram modeling, I encouraged restricted maximum likelihood estimation because of its accuracy and independence on the selected lags needed for experimental variograms. The second study dealt with the Ks spatial-temporal pattern in the sequences of natural and man-made disturbances characteristic for the montane rainforest study area. To investigate the disturbance effects both on global means and the spatial structure of Ks, a combined design-and model-based sampling approach was used for field-measurements at soil depths of 12.5, 20, and 50 cm (n=30-150/depth) under landslides of different ages (2 and 8 years), under actively grazed pasture, fallows following pasture abandonment (2 to 25 years of age), and under natural forest. Concerning global means, our main findings were 1) global means of the soil permeability generally decrease with increasing soil depth; 2) no significant Ks differences can be observed among landslides and compared to the natural forest; 3) a distinct permeability decrease of two orders of magnitude occurs after forest conversion to pasture at shallow soil depths, and 4) the slow regeneration process after pasture abandonment requires at least one decade. Regarding the Ks spatial structure, we found that 1) disturbances affect the Ks spatial structure in the topsoil, and 2) the largest differences in spatial patterns are associated with the subsoil permeability. In summary, the regional landslide activity seems to affect soil hydrology to a marginal extend only, which is in contrast to the pronounced drop of Ks after forest conversion. We used this spatial-temporal information combined with local rain intensities to assess the partitioning of rainfall into vertical and lateral flowpaths under undisturbed, disturbed, and regenerating land-cover types in the third study. It turned out that 1) the montane rainforest is characterized by prevailing vertical flowpaths in the topsoil, which can switch to lateral directions below 20 cm depth for a small number of rain events, which may, however, transport a high portion of the annual runoff; 2) similar hydrological flowpaths occur under the landslides except for a somewhat higher probability of impermeable layer formation in the topsoil of a young landslide, and 3) pronounced differences in runoff components can be observed for the human disturbance sequence involving the development of near-surface impeding layers for 24, 44, and 8 \% of rain events for pasture, a two-year-old fallow, and a ten-year-old fallow, respectively.}, language = {en} }