@article{BiegertBradyHipp2022, author = {Biegert, Thomas and Brady, David and Hipp, Lena}, title = {Cross-national variation in the relationship between welfare generosity and single mother employment}, series = {The annals of the American Academy of Political and Social Science}, volume = {702}, journal = {The annals of the American Academy of Political and Social Science}, number = {1}, publisher = {SAGE Publishing}, address = {Thousand Oaks}, issn = {0002-7162}, doi = {10.1177/00027162221120760}, pages = {37 -- 54}, year = {2022}, abstract = {Reform of the U.S. welfare system in 1996 spurred claims that cuts to welfare programs effectively incentivized single mothers to find employment. It is difficult to assess the veracity of those claims, however, absent evidence of how the relationship between welfare benefits and single mother employment generalizes across countries. This study combines data from the European Union Labour Force Survey and the U.S. Current Population Survey (1992-2015) into one of the largest samples of single mothers ever, testing the relationships between welfare generosity and single mothers' employment and work hours. We find no consistent evidence of a negative relationship between welfare generosity and single mother employment outcomes. Rather, we find tremendous cross-national heterogeneity, which does not clearly correspond to well-known institutional variations. Our findings demonstrate the limitations of single country studies and the pervasive, salient interactions between institutional contexts and social policies.}, language = {en} } @article{HennigKuehn2021, author = {Hennig, Theresa and K{\"u}hn, Michael}, title = {Surrogate model for multi-component diffusion of Uranium through Opalinus Clay on the host rock scale}, series = {Applied Sciences : open access journal}, volume = {11}, journal = {Applied Sciences : open access journal}, number = {2}, publisher = {MDPI}, address = {Basel}, issn = {2076-3417}, doi = {10.3390/app11020786}, pages = {21}, year = {2021}, abstract = {Multi-component (MC) diffusion simulations enable a process based and more precise approach to calculate transport and sorption compared to the commonly used single-component (SC) models following Fick's law. The MC approach takes into account the interaction of chemical species in the porewater with the diffuse double layer (DDL) adhering clay mineral surfaces. We studied the shaly, sandy and carbonate-rich facies of the Opalinus Clay. High clay contents dominate diffusion and sorption of uranium. The MC simulations show shorter diffusion lengths than the SC models due to anion exclusion from the DDL. This hampers diffusion of the predominant species CaUO2(CO3)32-. On the one side, species concentrations and ionic strengths of the porewater and on the other side surface charge of the clay minerals control the composition and behaviour of the DDL. For some instances, it amplifies the diffusion of uranium. We developed a workflow to transfer computationally intensive MC simulations to SC models via calibrated effective diffusion and distribution coefficients. Simulations for one million years depict maximum uranium diffusion lengths between 10 m and 35 m. With respect to the minimum requirement of a thickness of 100 m, the Opalinus Clay seems to be a suitable host rock for nuclear waste repositories.}, language = {en} } @article{StedingKempkaKuehn2021, author = {Steding, Svenja and Kempka, Thomas and K{\"u}hn, Michael}, title = {How insoluble inclusions and intersecting layers affect the leaching process within potash seams}, series = {Applied Sciences : open access journal}, volume = {11}, journal = {Applied Sciences : open access journal}, number = {19}, publisher = {MDPI}, address = {Basel}, issn = {2076-3417}, doi = {10.3390/app11199314}, pages = {21}, year = {2021}, abstract = {Potash seams are a valuable resource containing several economically interesting, but also highly soluble minerals. In the presence of water, uncontrolled leaching can occur, endangering subsurface mining operations. In the present study, the influence of insoluble inclusions and intersecting layers on leaching zone evolution was examined by means of a reactive transport model. For that purpose, a scenario analysis was carried out, considering different rock distributions within a carnallite-bearing potash seam. The results show that reaction-dominated systems are not affected by heterogeneities at all, whereas transport-dominated systems exhibit a faster advance in homogeneous rock compositions. In return, the ratio of permeated rock in vertical direction is higher in heterogeneous systems. Literature data indicate that most natural potash systems are transport-dominated. Accordingly, insoluble inclusions and intersecting layers can usually be seen as beneficial with regard to reducing hazard potential as long as the mechanical stability of leaching zones is maintained. Thereby, the distribution of insoluble areas is of minor impact unless an inclined, intersecting layer occurs that accelerates leaching zone growth in one direction. Moreover, it is found that the saturation dependency of dissolution rates increases the growth rate in the long term, and therefore must be considered in risk assessments.}, language = {en} } @article{VaidyaSchmidtRakowskietal.2021, author = {Vaidya, Shrijana and Schmidt, Marten and Rakowski, Peter and Bonk, Norbert and Verch, Gernot and Augustin, J{\"u}rgen and Sommer, Michael and Hoffmann, Mathias}, title = {A novel robotic chamber system allowing to accurately and precisely determining spatio-temporal CO2 flux dynamics of heterogeneous croplands}, series = {Agricultural and forest meteorology}, volume = {296}, journal = {Agricultural and forest meteorology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0168-1923}, doi = {10.1016/j.agrformet.2020.108206}, pages = {9}, year = {2021}, abstract = {The precise and accurate assessment of carbon dioxide (CO2) exchange is crucial to identify terrestrial carbon (C) sources and sinks and for evaluating their role within the global C budget. The substantial uncertainty in disentangling the management and soil impact on measured CO2 fluxes are largely ignored especially in cropland. The reasons for this lies in the limitation of the widely used eddy covariance as well as manual and automatic chamber systems, which either account for short-term temporal variability or small-scale spatial heterogeneity, but barely both. To address this issue, we developed a novel robotic chamber system allowing for dozens of spatial measurement repetitions, thus enabling CO2 exchange measurements in a sufficient temporal and high small-scale spatial resolution. The system was tested from 08th July to 09th September 2019 at a heterogeneous field (100 m x 16 m), located within the hummocky ground moraine landscape of northeastern Germany (CarboZALF-D). The field is foreseen for a longer-term block trial manipulation experiment extending over three erosion induced soil types and was covered with spring barley. Measured fluxes of nighttime ecosystem respiration (R-eco) and daytime net ecosystem exchange (NEE) showed distinct temporal patterns influenced by crop phenology, weather conditions and management practices. Similarly, we found clear small-scale spatial differences in cumulated (gap-filled) R-eco, gross primary productivity (GPP) and NEE fluxes affected by the three distinct soil types. Additionally, spatial patterns induced by former management practices and characterized by differences in soil pH and nutrition status (P and K) were also revealed between plots within each of the three soil types, which allowed compensating for prior to the foreseen block trial manipulation experiment. The results underline the great potential of the novel robotic chamber system, which not only detects short-term temporal CO2 flux dynamics but also reflects the impact of small-scale spatial heterogeneity.}, language = {en} } @article{HennigStockmannKuehn2020, author = {Hennig, Theresa and Stockmann, Madlen and K{\"u}hn, Michael}, title = {Simulation of diffusive uranium transport and sorption processes in the Opalinus Clay}, series = {Applied geochemistry : journal of the International Association of Geochemistry and Cosmochemistry}, volume = {123}, journal = {Applied geochemistry : journal of the International Association of Geochemistry and Cosmochemistry}, publisher = {Elsevier}, address = {Oxford}, issn = {0883-2927}, doi = {10.1016/j.apgeochem.2020.104777}, pages = {9}, year = {2020}, abstract = {Diffusive transport and sorption processes of uranium in the Swiss Opalinus Clay were investigated as a function of partial pressure of carbon dioxide pCO(2), varying mineralogy in the facies and associated changes in porewater composition. Simulations were conducted in one-dimensional diffusion models on the 100 m-scale for a time of one million years using a bottom-up approach based on mechanistic surface complexation models as well as cation exchange to quantify sorption. Speciation calculations have shown, uranium is mainly present as U(VI) and must therefore be considered as mobile for in-situ conditions. Uranium migrated up to 26 m in both, the sandy and the carbonate-rich facies, whereas in the shaly facies 16 m was the maximum. The main species was the anionic complex CaUO2(CO3)(3)(2-) . Hence, anion exclusion was taken into account and further reduced the migration distances by 30 \%. The concentrations of calcium and carbonates reflected by the set pCO(2) determine speciation and activity of uranium and consequently the sorption behaviour. Our simulation results allow for the first time to prioritize on the far-field scale the governing parameters for diffusion and sorption of uranium and hence outline the sensitivity of the system. Sorption processes are controlled in descending priority by the carbonate and calcium concentrations, pH, pe and the clay mineral content. Therefore, the variation in porewater composition resulting from the heterogeneity of the facies in the Opalinus Clay formation needs to be considered in the assessment of uranium migration in the far field of a potential repository.}, language = {en} } @misc{RingelSomogyvariJalalietal.2019, author = {Ringel, Lisa Maria and Somogyv{\´a}ri, M{\´a}rk and Jalali, Mohammadreza and Bayer, Peter}, title = {Comparison of hydraulic and tracer tomography for discrete fracture network inversion}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {922}, issn = {1866-8372}, doi = {10.25932/publishup-44261}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-442616}, pages = {19}, year = {2019}, abstract = {Fractures serve as highly conductive preferential flow paths for fluids in rocks, which are difficult to exactly reconstruct in numerical models. Especially, in low-conductive rocks, fractures are often the only pathways for advection of solutes and heat. The presented study compares the results from hydraulic and tracer tomography applied to invert a theoretical discrete fracture network (DFN) that is based on data from synthetic cross-well testing. For hydraulic tomography, pressure pulses in various injection intervals are induced and the pressure responses in the monitoring intervals of a nearby observation well are recorded. For tracer tomography, a conservative tracer is injected in different well levels and the depth-dependent breakthrough of the tracer is monitored. A recently introduced transdimensional Bayesian inversion procedure is applied for both tomographical methods, which adjusts the fracture positions, orientations, and numbers based on given geometrical fracture statistics. The used Metropolis-Hastings-Green algorithm is refined by the simultaneous estimation of the measurement error's variance, that is, the measurement noise. Based on the presented application to invert the two-dimensional cross-section between source and the receiver well, the hydraulic tomography reveals itself to be more suitable for reconstructing the original DFN. This is based on a probabilistic representation of the inverted results by means of fracture probabilities.}, language = {en} } @article{RingelSomogyvariJalalietal.2019, author = {Ringel, Lisa Maria and Somogyv{\´a}ri, M{\´a}rk and Jalali, Mohammadreza and Bayer, Peter}, title = {Comparison of hydraulic and tracer tomography for discrete fracture network inversion}, series = {Geosciences}, volume = {9}, journal = {Geosciences}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {2076-3263}, doi = {10.3390/geosciences9060274}, pages = {17}, year = {2019}, abstract = {Fractures serve as highly conductive preferential flow paths for fluids in rocks, which are difficult to exactly reconstruct in numerical models. Especially, in low-conductive rocks, fractures are often the only pathways for advection of solutes and heat. The presented study compares the results from hydraulic and tracer tomography applied to invert a theoretical discrete fracture network (DFN) that is based on data from synthetic cross-well testing. For hydraulic tomography, pressure pulses in various injection intervals are induced and the pressure responses in the monitoring intervals of a nearby observation well are recorded. For tracer tomography, a conservative tracer is injected in different well levels and the depth-dependent breakthrough of the tracer is monitored. A recently introduced transdimensional Bayesian inversion procedure is applied for both tomographical methods, which adjusts the fracture positions, orientations, and numbers based on given geometrical fracture statistics. The used Metropolis-Hastings-Green algorithm is refined by the simultaneous estimation of the measurement error's variance, that is, the measurement noise. Based on the presented application to invert the two-dimensional cross-section between source and the receiver well, the hydraulic tomography reveals itself to be more suitable for reconstructing the original DFN. This is based on a probabilistic representation of the inverted results by means of fracture probabilities.}, language = {en} } @misc{JeltschGrimmReegetal.2019, author = {Jeltsch, Florian and Grimm, Volker and Reeg, Jette and Schl{\"a}gel, Ulrike E.}, title = {Give chance a chance}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {742}, issn = {1866-8372}, doi = {10.25932/publishup-43532}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-435320}, pages = {19}, year = {2019}, abstract = {A large part of biodiversity theory is driven by the basic question of what allows species to coexist in spite of a confined number of niches. A substantial theoretical background to this question is provided by modern coexistence theory (MCT), which rests on mathematical approaches of invasion analysis to categorize underlying mechanisms into factors that reduce either niche overlap (stabilizing mechanisms) or the average fitness differences of species (equalizing mechanisms). While MCT has inspired biodiversity theory in the search for these underlying mechanisms, we feel that the strong focus on coexistence causes a bias toward the most abundant species and neglects the plethora of species that are less abundant and often show high local turnover. Given the more stochastic nature of their occurrence, we advocate a complementary cross-level approach that links individuals, small populations, and communities and explicitly takes into account (1) a more complete inclusion of environmental and demographic stochasticity affecting small populations, (2) intraspecific trait variation and behavioral plasticity, and (3) local heterogeneities, interactions, and feedbacks. Focusing on mechanisms that drive the temporary coviability of species rather than infinite coexistence, we suggest a new approach that could be dubbed coviability analysis (CVA). From a modeling perspective, CVA builds on the merged approaches of individual-based modeling and population viability analysis but extends them to the community level. From an empirical viewpoint, CVA calls for a stronger integration of spatiotemporal data on variability and noise, changing drivers, and interactions at the level of individuals. The resulting large volumes of data from multiple sources could be strongly supported by novel techniques tailored to the discovery of complex patterns in high-dimensional data. By complementing MCT through a stronger focus on the coviability of less common species, this approach can help make modern biodiversity theory more comprehensive, predictive, and relevant for applications.}, language = {en} } @article{JeltschGrimmReegetal.2019, author = {Jeltsch, Florian and Grimm, Volker and Reeg, Jette and Schl{\"a}gel, Ulrike E.}, title = {Give chance a chance}, series = {Ecosphere}, volume = {10}, journal = {Ecosphere}, number = {5}, publisher = {ESA}, address = {Ithaca, NY}, issn = {2150-8925}, doi = {10.1002/ecs2.2700}, pages = {19}, year = {2019}, abstract = {A large part of biodiversity theory is driven by the basic question of what allows species to coexist in spite of a confined number of niches. A substantial theoretical background to this question is provided by modern coexistence theory (MCT), which rests on mathematical approaches of invasion analysis to categorize underlying mechanisms into factors that reduce either niche overlap (stabilizing mechanisms) or the average fitness differences of species (equalizing mechanisms). While MCT has inspired biodiversity theory in the search for these underlying mechanisms, we feel that the strong focus on coexistence causes a bias toward the most abundant species and neglects the plethora of species that are less abundant and often show high local turnover. Given the more stochastic nature of their occurrence, we advocate a complementary cross-level approach that links individuals, small populations, and communities and explicitly takes into account (1) a more complete inclusion of environmental and demographic stochasticity affecting small populations, (2) intraspecific trait variation and behavioral plasticity, and (3) local heterogeneities, interactions, and feedbacks. Focusing on mechanisms that drive the temporary coviability of species rather than infinite coexistence, we suggest a new approach that could be dubbed coviability analysis (CVA). From a modeling perspective, CVA builds on the merged approaches of individual-based modeling and population viability analysis but extends them to the community level. From an empirical viewpoint, CVA calls for a stronger integration of spatiotemporal data on variability and noise, changing drivers, and interactions at the level of individuals. The resulting large volumes of data from multiple sources could be strongly supported by novel techniques tailored to the discovery of complex patterns in high-dimensional data. By complementing MCT through a stronger focus on the coviability of less common species, this approach can help make modern biodiversity theory more comprehensive, predictive, and relevant for applications.}, language = {en} } @article{DietrichLazarides2019, author = {Dietrich, Julia and Lazarides, Rebecca}, title = {Gendered development of motivational belief patterns in mathematics across a school year and career plans in math-related fields}, series = {Frontiers in psychology}, volume = {10}, journal = {Frontiers in psychology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-1078}, doi = {10.3389/fpsyg.2019.01472}, pages = {5}, year = {2019}, abstract = {Rooted in Eccles and colleagues' expectancy-value theory, this study aimed to examine how expectancies and different facets of task value combine to diverse profiles of motivational beliefs, how such complex profiles develop across a school year, and how they relate to gender and career plans. Despite abundant research on the association between gender and motivational beliefs, there is a paucity of knowledge regarding the gendered development of student motivational belief profiles in specific domains. Using latent-transition analysis in a sample of N = 751 ninth to tenth graders (55.9\% girls), we investigated girls' and boys' development of motivational belief profiles (profile paths) in mathematics across a school year. We further analyzed the association between these profile paths and math-related career plans. The results revealed four motivational belief profiles: high motivation (intrinsic and attainment oriented), balanced above average motivation, average motivation (attainment and cost oriented), and low motivation (cost oriented). Girls were less likely than expected by chance to remain in the high motivation profile, while the opposite was true for boys. The math-relatedness of students' career plans was significantly higher in the "stable high motivation" profile path than in all other stable profile paths.}, language = {en} }