@phdthesis{Koyan2024, author = {Koyan, Philipp}, title = {3D attribute analysis and classification to interpret ground-penetrating radar (GPR) data collected across sedimentary environments: Synthetic studies and field examples}, doi = {10.25932/publishup-63948}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-639488}, school = {Universit{\"a}t Potsdam}, pages = {xi, 115, A51}, year = {2024}, abstract = {Die Untersuchung des oberfl{\"a}chennahen Untergrundes erfolgt heutzutage bei Frage- stellungen aus den Bereichen des Bauwesens, der Arch{\"a}ologie oder der Geologie und Hydrologie oft mittels zerst{\"o}rungsfreier beziehungsweise zerst{\"o}rungsarmer Methoden der angewandten Geophysik. Ein Bereich, der eine immer zentralere Rolle in Forschung und Ingenieurwesen einnimmt, ist die Untersuchung von sediment{\"a}ren Umgebungen, zum Beispiel zur Charakterisierung oberfl{\"a}chennaher Grundwassersysteme. Ein in diesem Kontext h{\"a}ufig eingesetztes Verfahren ist das des Georadars (oftmals GPR - aus dem Englischen ground-penetrating radar). Dabei werden kurze elektromagnetische Impulse von einer Antenne in den Untergrund ausgesendet, welche dort wiederum an Kontrasten der elektromagnetischen Eigenschaften (wie zum Beispiel an der Grundwasseroberfl{\"a}che) reflektiert, gebrochen oder gestreut werden. Eine Empfangsantenne zeichnet diese Signale in Form derer Amplituden und Laufzeiten auf. Eine Analyse dieser aufgezeichneten Signale erm{\"o}glicht Aussagen {\"u}ber den Untergrund, beispielsweise {\"u}ber die Tiefenlage der Grundwasseroberfl{\"a}che oder die Lagerung und Charakteristika oberfl{\"a}chennaher Sedimentschichten. Dank des hohen Aufl{\"o}sungsverm{\"o}gens der GPR-Methode sowie stetiger technologischer Entwicklungen erfolgt heutzutage die Aufzeichnung von GPR- Daten immer h{\"a}ufiger in 3D. Trotz des hohen zeitlichen und technischen Aufwandes f{\"u}r die Datenakquisition und -bearbeitung werden die resultierenden 3D-Datens{\"a}tze, welche den Untergrund hochaufl{\"o}send abbilden, typischerweise von Hand interpretiert. Dies ist in der Regel ein {\"a}ußerst zeitaufwendiger Analyseschritt. Daher werden oft repr{\"a}sentative 2D-Schnitte aus dem 3D-Datensatz gew{\"a}hlt, in denen markante Reflektionsstrukuren markiert werden. Aus diesen Strukturen werden dann sich {\"a}hnelnde Bereiche im Untergrund als so genannte Radar-Fazies zusammengefasst. Die anhand von 2D-Schnitten erlangten Resultate werden dann als repr{\"a}sentativ f{\"u}r die gesamte untersuchte Fl{\"a}che angesehen. In dieser Form durchgef{\"u}hrte Interpretationen sind folglich oft unvollst{\"a}ndig sowie zudem in hohem Maße von der Expertise der Interpretierenden abh{\"a}ngig und daher in der Regel nicht reproduzierbar. Eine vielversprechende Alternative beziehungsweise Erg{\"a}nzung zur manuellen In- terpretation ist die Verwendung von so genannten GPR-Attributen. Dabei werden nicht die aufgezeichneten Daten selbst, sondern daraus abgeleitete Gr{\"o}ßen, welche die markanten Reflexionsstrukturen in 3D charakterisieren, zur Interpretation herangezogen. In dieser Arbeit wird anhand verschiedener Feld- und Modelldatens{\"a}tze untersucht, welche Attribute sich daf{\"u}r insbesondere eignen. Zudem zeigt diese Arbeit, wie ausgew{\"a}hlte Attribute mittels spezieller Bearbeitungs- und Klassifizierungsmethoden zur Erstellung von 3D-Faziesmodellen genutzt werden k{\"o}nnen. Dank der M{\"o}glichkeit der Erstellung so genannter attributbasierter 3D-GPR-Faziesmodelle k{\"o}nnen zuk{\"u}nftige Interpretationen zu gewissen Teilen automatisiert und somit effizienter durchgef{\"u}hrt werden. Weiterhin beschreiben die so erhaltenen Resultate den untersuchten Untergrund in reproduzierbarer Art und Weise sowie umf{\"a}nglicher als es bisher mittels manueller Interpretationsmethoden typischerweise m{\"o}glich war.}, language = {en} } @phdthesis{Lilienkamp2024, author = {Lilienkamp, Henning}, title = {Enhanced computational approaches for data-driven characterization of earthquake ground motion and rapid earthquake impact assessment}, doi = {10.25932/publishup-63195}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-631954}, school = {Universit{\"a}t Potsdam}, pages = {x, 145}, year = {2024}, abstract = {Rapidly growing seismic and macroseismic databases and simplified access to advanced machine learning methods have in recent years opened up vast opportunities to address challenges in engineering and strong motion seismology from novel, datacentric perspectives. In this thesis, I explore the opportunities of such perspectives for the tasks of ground motion modeling and rapid earthquake impact assessment, tasks with major implications for long-term earthquake disaster mitigation. In my first study, I utilize the rich strong motion database from the Kanto basin, Japan, and apply the U-Net artificial neural network architecture to develop a deep learning based ground motion model. The operational prototype provides statistical estimates of expected ground shaking, given descriptions of a specific earthquake source, wave propagation paths, and geophysical site conditions. The U-Net interprets ground motion data in its spatial context, potentially taking into account, for example, the geological properties in the vicinity of observation sites. Predictions of ground motion intensity are thereby calibrated to individual observation sites and earthquake locations. The second study addresses the explicit incorporation of rupture forward directivity into ground motion modeling. Incorporation of this phenomenon, causing strong, pulse like ground shaking in the vicinity of earthquake sources, is usually associated with an intolerable increase in computational demand during probabilistic seismic hazard analysis (PSHA) calculations. I suggest an approach in which I utilize an artificial neural network to efficiently approximate the average, directivity-related adjustment to ground motion predictions for earthquake ruptures from the 2022 New Zealand National Seismic Hazard Model. The practical implementation in an actual PSHA calculation demonstrates the efficiency and operational readiness of my model. In a follow-up study, I present a proof of concept for an alternative strategy in which I target the generalizing applicability to ruptures other than those from the New Zealand National Seismic Hazard Model. In the third study, I address the usability of pseudo-intensity reports obtained from macroseismic observations by non-expert citizens for rapid impact assessment. I demonstrate that the statistical properties of pseudo-intensity collections describing the intensity of shaking are correlated with the societal impact of earthquakes. In a second step, I develop a probabilistic model that, within minutes of an event, quantifies the probability of an earthquake to cause considerable societal impact. Under certain conditions, such a quick and preliminary method might be useful to support decision makers in their efforts to organize auxiliary measures for earthquake disaster response while results from more elaborate impact assessment frameworks are not yet available. The application of machine learning methods to datasets that only partially reveal characteristics of Big Data, qualify the majority of results obtained in this thesis as explorative insights rather than ready-to-use solutions to real world problems. The practical usefulness of this work will be better assessed in the future by applying the approaches developed to growing and increasingly complex data sets.}, language = {en} } @phdthesis{Illien2023, author = {Illien, Luc}, title = {Time-dependent properties of the shallow subsurface}, doi = {10.25932/publishup-59936}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-599367}, school = {Universit{\"a}t Potsdam}, pages = {xviii, 133}, year = {2023}, abstract = {The shallow Earth's layers are at the interplay of many physical processes: some being driven by atmospheric forcing (precipitation, temperature...) whereas others take their origins at depth, for instance ground shaking due to seismic activity. These forcings cause the subsurface to continuously change its mechanical properties, therefore modulating the strength of the surface geomaterials and hydrological fluxes. Because our societies settle and rely on the layers hosting these time-dependent properties, constraining the hydro-mechanical dynamics of the shallow subsurface is crucial for our future geographical development. One way to investigate the ever-changing physical changes occurring under our feet is through the inference of seismic velocity changes from ambient noise, a technique called seismic interferometry. In this dissertation, I use this method to monitor the evolution of groundwater storage and damage induced by earthquakes. Two research lines are investigated that comprise the key controls of groundwater recharge in steep landscapes and the predictability and duration of the transient physical properties due to earthquake ground shaking. These two types of dynamics modulate each other and influence the velocity changes in ways that are challenging to disentangle. A part of my doctoral research also addresses this interaction. Seismic data from a range of field settings spanning several climatic conditions (wet to arid climate) in various seismic-prone areas are considered. I constrain the obtained seismic velocity time-series using simple physical models, independent dataset, geophysical tools and nonlinear analysis. Additionally, a methodological development is proposed to improve the time-resolution of passive seismic monitoring.}, language = {en} } @article{TronickeTrauth2018, author = {Tronicke, Jens and Trauth, Martin H.}, title = {Classroom-sized geophysical experiments}, series = {European Journal of Physics}, volume = {39}, journal = {European Journal of Physics}, number = {3}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0143-0807}, doi = {10.1088/1361-6404/aaad5b}, pages = {15}, year = {2018}, abstract = {Modern mobile devices (i.e. smartphones and tablet computers) are widespread, everyday tools, which are equipped with a variety of sensors including three-axis magnetometers. Here, we investigate the feasibility and the potential of using such mobile devices to mimic geophysical experiments in the classroom in a table-top setup. We focus on magnetic surveying and present a basic setup of a table-top experiment for collecting three-component magnetic data across well-defined source bodies and structures. Our results demonstrate that the quality of the recorded data is sufficient to address a number of important basic concepts in the magnetic method. The shown examples cover the analysis of magnetic data recorded across different kinds of dipole sources, thus illustrating the complexity of magnetic anomalies. In addition, we analyze the horizontal resolution capabilities using a pair of dipole sources placed at different horizontal distances to each other. Furthermore, we demonstrate that magnetic data recorded with a mobile device can even be used to introduce filtering, transformation, and inversion approaches as they are typically used when processing magnetic data sets recorded for real-world field applications. Thus, we conclude that such table-top experiments represent an easy-to-implement experimental procedure (as student exercise or classroom demonstration) and can provide first hands-on experience in the basic principles of magnetic surveying including the fundamentals of data acquisition, analysis and processing, as well as data evaluation and interpretation.}, language = {en} } @article{CreightonParsekianAngelopoulosetal.2018, author = {Creighton, Andrea L. and Parsekian, Andrew D. and Angelopoulos, Michael and Jones, Benjamin M. and Bondurant, A. and Engram, M. and Lenz, Josefine and Overduin, Pier Paul and Grosse, Guido and Babcock, E. and Arp, Christopher D.}, title = {Transient Electromagnetic Surveys for the Determination of Talik Depth and Geometry Beneath Thermokarst Lakes}, series = {Journal of geophysical research : Solid earth}, volume = {123}, journal = {Journal of geophysical research : Solid earth}, number = {11}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9313}, doi = {10.1029/2018JB016121}, pages = {9310 -- 9323}, year = {2018}, abstract = {Thermokarst lakes are prevalent in Arctic coastal lowland regions and sublake permafrost degradation and talik development contributes to greenhouse gas emissions by tapping the large permafrost carbon pool. Whereas lateral thermokarst lake expansion is readily apparent through remote sensing and shoreline measurements, sublake thawed sediment conditions and talik growth are difficult to measure. Here we combine transient electromagnetic surveys with thermal modeling, backed up by measured permafrost properties and radiocarbon ages, to reveal closed-talik geometry associated with a thermokarst lake in continuous permafrost. To improve access to talik geometry data, we conducted surveys along three transient electromagnetic transects perpendicular to lakeshores with different decadal-scale expansion rates of 0.16, 0.38, and 0.58m/year. We modeled thermal development of the talik using boundary conditions based on field data from the lake, surrounding permafrost and a borehole, independent of the transient electromagnetics. A talik depth of 91m was determined from analysis of the transient electromagnetic surveys. Using a lake initiation age of 1400years before present and available subsurface properties the results from thermal modeling of the lake center arrived at a best estimate talk depth of 80m, which is on the same order of magnitude as the results from the transient electromagnetic survey. Our approach has provided a noninvasive estimate of talik geometry suitable for comparable settings throughout circum-Arctic coastal lowland regions.}, language = {en} } @phdthesis{Liu2020, author = {Liu, Sibiao}, title = {Controls of foreland-deformation patterns in the orogen-foreland shortening system}, doi = {10.25932/publishup-44573}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-445730}, school = {Universit{\"a}t Potsdam}, pages = {vi, 150}, year = {2020}, abstract = {The Andean Plateau (Altiplano-Puna Plateau) of the southern Central Andes is the second-highest orogenic plateau on our planet after Tibet. The Andean Plateau and its foreland exhibit a pronounced segmentation from north to south regarding the style and magnitude of deformation. In the Altiplano (northern segment), more than 300 km of tectonic shortening has been recorded, which started during the Eocene. A well-developed thin-skinned thrust wedge located at the eastern flank of the plateau (Subandes) indicates a simple-shear shortening mode. In contrast, the Puna (southern segment) records approximately half of the shortening of the Altiplano - and the shortening started later. The tectonic style in the Puna foreland switches to a thick-skinned mode, which is related to pure-shear shortening. In this study, carried out in the framework of the StRATEGy project, high-resolution 2D thermomechanical models were developed to systematically investigate controls of deformation patterns in the orogen-foreland pair. The 2D and 3D models were subsequently applied to study the evolution of foreland deformation and surface topography in the Altiplano-Puna Plateau. The models demonstrate that three principal factors control the foreland-deformation patterns: (i) strength differences in the upper lithosphere between the orogen and its foreland, rather than a strength difference in the entire lithosphere; (ii) gravitational potential energy of the orogen (GPE) controlled by crustal and lithospheric thicknesses, and (iii) the strength and thickness of foreland-basin sediments. The high-resolution 2D models are constrained by observations and successfully reproduce deformation structures and surface topography of different segments of the Altiplano-Puna plateau and its foreland. The developed 3D models confirm these results and suggest that a relatively high shortening rate in the Altiplano foreland (Subandean foreland fold-and-thrust belt) is due to simple-shear shortening facilitated by thick and mechanically weak sediments, a process which requires a much lower driving force than the pure-shear shortening deformation mode in the adjacent broken foreland of the Puna, where these thick sedimentary basin fills are absent. Lower shortening rate in the Puna foreland is likely accommodated in the forearc by the slab retreat.}, language = {en} } @phdthesis{Priegnitz2015, author = {Priegnitz, Mike}, title = {Development of geophysical methods to characterize methane hydrate reservoirs on a laboratory scale}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-89321}, school = {Universit{\"a}t Potsdam}, pages = {X, 99}, year = {2015}, abstract = {Gashydrate sind kristalline Feststoffe bestehend aus Wasser und Gasmolek{\"u}len. Sie sind stabil bei erh{\"o}hten Dr{\"u}cken und niedrigen Temperaturen. Nat{\"u}rliche Hydratvorkommen treten daher an Kontinentalh{\"a}ngen, in Permafrostb{\"o}den und in tiefen Seen sowie Binnenmeeren auf. Bei der Hydratbildung orientieren sich die Wassermolek{\"u}le neu und bilden sogenannte K{\"a}figstrukturen, in die Gas eingelagert werden kann. Aufgrund des hohen Drucks bei der Hydratbildung k{\"o}nnen große Mengen an Gas in die Hydratstruktur eingebaut werden. Das Volumenverh{\"a}ltnis von Wasser zu Gas kann dabei bis zu 1:172 bei 0°C und Atmosph{\"a}rendruck betragen. Nat{\"u}rliche Gashydrate enthalten haupts{\"a}chlich Methan. Da Methan sowohl ein Treibhausgas als auch ein Brenngas ist, stellen Gashydrate gleichermaßen eine potentielle Energieressource sowie eine m{\"o}gliche Quelle f{\"u}r Treibhausgase dar. Diese Arbeit untersucht die physikalischen Eigenschaften von Methanhydrat ges{\"a}ttigten Sedimentproben im Labormaßstab. Dazu wurde ein großer Reservoirsimulator (LARS) mit einer eigens entwickelten elektrischen Widerstandstomographie ausger{\"u}stet, die das erste Mal an hydratges{\"a}ttigten Sedimentproben unter kontrollierten Temperatur-, Druck-, und Hydrats{\"a}ttigungsbedingungen im Labormaßstab angewendet wurde. {\"U}blicherweise ist der Porenraum von (marinen) Sedimenten mit elektrisch gut leitendem Salzwasser gef{\"u}llt. Da Hydrate einen elektrischen Isolator darstellen, ergeben sich große Kontraste hinsichtlich der elektrischen Eigenschaften im Porenraum w{\"a}hrend der Hydratbildung und -zersetzung. Durch wiederholte Messungen w{\"a}hrend der Hydraterzeugung ist es m{\"o}glich die r{\"a}umliche Widerstandsverteilung in LARS aufzuzeichnen. Diese Daten bilden in der Folge die Grundlage f{\"u}r eine neue Auswerteroutine, welche die r{\"a}umliche Widerstandsverteilung in die r{\"a}umliche Verteilung der Hydrats{\"a}ttigung {\"u}berf{\"u}hrt. Dadurch ist es m{\"o}glich, die sich {\"a}ndernde Hydrats{\"a}ttigung sowohl r{\"a}umlich als auch zeitlich hoch aufgel{\"o}st w{\"a}hrend der gesamten Hydraterzeugungsphase zu verfolgen. Diese Arbeit zeigt, dass die entwickelte Widerstandstomographie eine gute Datenqualit{\"a}t aufwies und selbst geringe Hydrats{\"a}ttigungen innerhalb der Sedimentprobe detektiert werden konnten. Bei der Umrechnung der Widerstandsverteilung in lokale Hydrat-S{\"a}ttigungswerte wurden die besten Ergebnisse mit dem Archie-var-phi Ansatz erzielt, der die zunehmende Hydratphase dem Sedimentger{\"u}st zuschreibt, was einer Abnahme der Porosit{\"a}t gleichkommt. Die Widerstandsmessungen zeigten weiterhin, dass die schnelle Hydraterzeugung im Labor zur Ausbildung von kleinen Hydratkristallen f{\"u}hrte, die dazu neigten, zu rekristalliesieren. Es wurden weiterhin Hydrat-Abbauversuche durchgef{\"u}hrt, bei denen die Hydratphase {\"u}ber Druckerniedrigung in Anlehnung an den 2007/2008 Mallik Feldtest zersetzt wurde. Dabei konnte beobachtet werden, dass die Muster der Gas- undWasserflussraten im Labor zum Teil gut nachgebildet werden konnten, jedoch auch aufbaubedingte Abweichungen auftraten. In zwei weiteren Langzeitversuchen wurde die Realisierbarkeit und das Verhalten bei CO2-CH4-Hydrat Austauschversuchen in LARS untersucht. Das tomographische Messsystem wurde dabei genutzt um w{\"a}hrend der CH4 Hydrat Aufbauphase die Hydratverteilung innerhalb der Sedimentprobe zu {\"u}berwachen. Im Zuge der anschließenden CO2-Injektion konnte mithilfe der Widerstandstomographie die sich ausbreitende CO2-Front {\"u}berwacht und der Zeitpunkt des CO2 Durchbruchs identifiziert werden.}, language = {en} }